【題目】(1)已知:如圖1,P為△ADC內(nèi)一點(diǎn),DP、CP分別平分∠ADC和∠ACD,如果∠A=90°,那么∠P=______°;如果∠A=x°,則∠P=____________°;(答案直接填在題中橫線上)
(2)如圖2,P為四邊形ABCD內(nèi)一點(diǎn),DP、CP分別平分∠ADC和∠BCD,試探究∠P與∠A+∠B的數(shù)量關(guān)系,并寫(xiě)出你的探索過(guò)程;
(3)如圖3,P為五邊形ABCDE內(nèi)一點(diǎn),DP、CP分別平分∠EDC和∠BCD,請(qǐng)直接寫(xiě)出∠P與∠A+∠B+∠E的數(shù)量關(guān)系:________________;
(4)若P為n邊形A1A2A3…An內(nèi)一點(diǎn),PA1平分∠AnA1A2,PA2平分∠A1A2A3,請(qǐng)直接寫(xiě)出∠P與∠A3+A4+A5+…∠An的數(shù)量關(guān)系:__________________________.(用含n的代數(shù)式表示)
【答案】如果∠A=90°,那么∠P=135°;如果∠A=x°,則∠P=(90+)° ∠P=(∠A+∠B) ∠P=(∠A+∠B+∠E)﹣90° ∠P=(∠A3+∠A4+∠A5+…∠An)﹣(n﹣4)×90°
【解析】
(1)根據(jù)角平分線的定義和三角形內(nèi)角和定理,列式整理解答;
(2)根據(jù)角平分線的定義和四邊形的內(nèi)角和,列式整理解答;
(3)根據(jù)角平分線的定義和五邊形的內(nèi)角和,列式整理解答;
(4)根據(jù)角平分線的定義和n邊形的內(nèi)角和公式,列式整理解答;
(1)∵DP、CP分別平分∠ADC和∠ACD,
∴∠PDC=∠ADC,∠PCD=∠ACD,
∴∠DPC=180°﹣∠PDC﹣∠PCD
=180°﹣∠ADC﹣∠ACD
=180°﹣(∠ADC+∠ACD)
=180°﹣(180°﹣∠A)
=90°+ ∠A,
∴如果∠A=90°,那么∠P=135°;如果∠A=x°,則∠P=(90+)°;
(2)∵DP、CP分別平分∠ADC和∠BCD,
∴∠PDC=∠ADC,∠PCD=∠BCD,
∴∠DPC=180°﹣∠PDC﹣∠PCD
=180°﹣∠ADC﹣∠BCD
=180°﹣(∠ADC+∠BCD)
=180°﹣(360°﹣∠A﹣∠B)
(3)五邊形ABCDEF的內(nèi)角和為:(5﹣2)180°=540°,
∵DP、CP分別平分∠EDC和∠BCD,
∴∠PDC=∠EDC,∠PCD=∠BCD,
∴∠P=180°﹣∠PDC﹣∠PCD
=180°﹣∠EDC﹣∠BCD
=180°﹣(∠EDC+∠BCD)
=180°﹣(540°﹣∠A﹣∠B﹣∠E)
=(∠A+∠B+∠E)﹣90°,
即∠P=(∠A+∠B+∠E)﹣90°;
(4)同(1)可得,∠P=(∠A3+∠A4+∠A5+…∠An)﹣(n﹣4)×90°.
故答案為:(1)如果∠A=90°,那么∠P=135°;如果∠A=x°,則∠P=(90+)°(2)∠P=180°﹣∠PDC﹣∠PCD=(∠A+∠B)(3)∠P=(∠A+∠B+∠E)﹣90°(4)∠P=(∠A3+∠A4+∠A5+…∠An)﹣(n﹣4)×90°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)P在CA的延長(zhǎng)線上,∠CAD=45°.
(Ⅰ)若AB=4,求 的長(zhǎng);
(Ⅱ)若 = ,AD=AP,求證:PD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠BOC=60°,OF平分∠BOC.若AO⊥BO,OE平分∠AOC,則∠EOF的度數(shù)是( )
A. 45°
B. 15°
C. 30°或60°
D. 45°或15°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,E、F分別是邊AD、DC上的點(diǎn),且AF⊥BE.
(1)求證:AF=BE;
(2)如圖2,在正方形ABCD中,M、N、P、Q分別是邊AB、BC、CD、DA上的點(diǎn),且MP⊥NQ.MP與NQ是否相等?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過(guò)點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).
(3)根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC和△DBC中,∠ACB=∠DBC=90°,點(diǎn)E是BC的中點(diǎn),EF⊥AB,垂足為F,且AB=DE.
(1)求證:△BCD是等腰直角三角形;
(2)若BD=8厘米,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圖1表示的是某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問(wèn)總量的情況,圖2表示的是學(xué)生日訪問(wèn)量占訪問(wèn)總量的百分比情況,觀察圖1、圖2,解答下列問(wèn)題:
(1)若這7天的日訪問(wèn)總量一共約為10萬(wàn)人次,求星期三的日訪問(wèn)總量;
(2)求星期日學(xué)生日訪問(wèn)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=﹣2x+2的圖象.
(1)求A、B、P三點(diǎn)坐標(biāo).
(2)求△PAB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com