5.如圖1,將一副三角板的兩個銳角頂點放到一塊,∠AOB=45°,∠COD=30°,OM,ON分別是∠AOC,∠BOD的角平分線.
(1)當∠COD繞著點O逆時針旋轉至射線OB與OC重合時(如圖2),則∠MON的大小為37.5°;
(2)如圖3,在(1)的條件下,繼續(xù)繞著點O逆時針旋轉∠COD,當∠BOC=10°時,求∠MON的大小,寫出解答過程;
(3)在∠COD繞點O逆時針旋轉過程中,∠MON=37.5或142.5°.

分析 (1)根據角平分線的定義可以求得∠MON=$\frac{1}{2}$(∠AOB+∠COD);
(2)根據圖示可以求得:∠BOD=∠BOC+∠COD=40°.然后結合角平分線的定義推知∠CON=$\frac{1}{2}$∠BOD,∠COM=$\frac{1}{2}$∠AOC,即可得到結論;
(3)根據(1)、(2)的解題思路即可得到結論.

解答 解:(1)∵∠AOB=45°,∠COD=30°,OM,ON分別是∠AOC,∠BOD的角平分線,
∴∠BON=$\frac{1}{2}$∠COD=15°,∠MOB=$\frac{1}{2}$∠AOB=22.5°,
∴∠MON=37.5°.
故答案為:37.5°;
(2)當繞著點O逆時針旋轉∠COD,∠BOC=10°時,∠AOC=55°,∠BOD=40°,
∴∠BON=$\frac{1}{2}$∠BOD=20°,∠MOB=$\frac{1}{2}$∠AOC=22.5°,
∴∠MON=37.5°;
(3)∵∠AOC=∠AOB+∠BOC,∠BOD=∠COD+∠BOC,
∵OM,ON分別是∠AOC,∠BOD的角平分線,∠AOB=45°,∠COD=30°,
∴∠MOC=$\frac{1}{2}$∠AOC=$\frac{1}{2}$(∠AOB+∠BOC),∠CON=$\frac{1}{2}∠$BOD-∠BOC,
∴∠MON=$\frac{1}{2}$(∠AOB+∠BOC)+$\frac{1}{2}∠$BOD-∠BOC=$\frac{1}{2}∠AOB$+$\frac{1}{2}$(∠BOD-∠BOC)=$\frac{1}{2}∠AOB+\frac{1}{2}∠COD$=37.5°,$\frac{1}{2}$α+$\frac{1}{2}$β=$\frac{1}{2}$(α+β);
當∠COD在OA、OB的反向延長線形成的角的內部時,
同理,∠MON=142.5°,
綜上所述:∠MON=37.5°或142.5°,
故答案是:37.5或142.5.

點評 此題主要考查了角的計算,正確根據角平分線的性質得出是解題關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

7.甲、乙兩人共有圖書80本,若甲贈給乙6本書,兩人的圖書就一樣多,如果甲、乙兩人原來分別有x本、y本,依題意列方程組,得$\left\{\begin{array}{l}{x+y=80}\\{x-6=y+6}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.閱讀下列材料,并用相關的思想方法解決問題.
計算:3.1468×7.1468-0.14682
解:設0.1468=a,∴原式=(a+3)(a+7)-a2=a2+10a+21-a2=10a+21
把a=0.1468代入,∴原式=10×0.1468+21=22.468.
問題:
(1)計算:(1-$\frac{1}{2}$-$\frac{1}{3}$-$\frac{1}{4}$)×($\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$)-(1-$\frac{1}{2}$-$\frac{1}{3}$-$\frac{1}{4}$-$\frac{1}{5}$)×($\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$).
(2)若M=56789×56786,N=56788×56787,試比較M,N的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

13.已知:如圖,在梯形ABCD中,AD∥BC,AD=$\frac{1}{3}BC$,點M是邊BC的中點$\overrightarrow{AD}$=$\overrightarrow{a}$,$\overrightarrow{AB}$=$\overrightarrow$
(1)填空:$\overrightarrow{BM}$=$\frac{3}{2}$$\overrightarrow{a}$,$\overrightarrow{MA}$=-$\frac{3}{2}$$\overrightarrow{a}$-$\overrightarrow$(結果用$\overrightarrow{a}$、$\overrightarrow$表示)
(2)直接在圖中畫出向量2$\overrightarrow{a}$+$\overrightarrow$.(不要求寫作法,但要指出圖中表示結論的向量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

20.甲乙兩名運動員在長50米的游泳池兩邊同時開始相向游泳,甲游50米要36秒,乙游50米要30秒,略去轉身時間不計,在6分鐘內二人相遇11次.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.已知某二次函數(shù)的對稱軸平行于y軸,圖象頂點為A(1,0),且與y軸交于點B(0,1)
(1)求該二次函數(shù)的解析式;
(2)設C為該二次函數(shù)圖象上橫坐標為2的點,記$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,試用$\overrightarrow{a}$、$\overrightarrow$表示$\overrightarrow{OC}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

17.如圖,△ABC≌△ADE,若∠BAE=130°,∠BAD=50°,則∠BAC的度數(shù)為( 。
A.130°B.50°C.30°D.80°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.如圖,在直角坐標系中矩形OABC的頂點O與坐標原點重合.點A、C分別在坐標軸上,反比例函數(shù)y=$\frac{k}{x}$(k>0)的圖象與AB、BC分別交于點E、F(E、F不與B點重合),連接OE,OF.
(1)若B點的坐標為(4,2),且E為AB的中點.
①求四邊形BEOF的面積.
②求證:F為BC的中點.
(2)猜想$\frac{AE}{BE}$與$\frac{CF}{BF}$的大小關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

15.若x1、x2是方程x2+3x-1=0的兩根,則(x1-1)(x2-1)=3.

查看答案和解析>>

同步練習冊答案