如圖在△ABC中,AB=AC,D為AB邊上一點(diǎn),且BD=2AD,過D作DE∥BC,⊙O內(nèi)切于四邊形BCED,則sinB的值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:先由DE∥BC,根據(jù)平行線分線段成比例定理得出BC=3DE,根據(jù)同一底上的兩個(gè)角相等的梯形是等腰梯形證明四邊形BCED是等腰梯形,則BD=CE,再作等腰梯形BCED的高DF、EG,設(shè)DE=a,根據(jù)圓外切四邊形及等腰梯形的性質(zhì)得出BD=CE=2a,然后解Rt△BDF,即可求出sinB的值.
解答:解:∵DE∥BC,BD=2AD,
==,
∴BC=3DE.
∵AB=AC,
∴∠B=∠C,
∵DE∥BC,BC≠DE,
∴四邊形BCED是等腰梯形,
∴BD=CE.
作等腰梯形BCED的高DF、EG,則四邊形DEGF是矩形,BF=CG.
設(shè)DE=a,則BC=3DE=3a,BF=CG==a.
∵⊙O內(nèi)切于四邊形BCED,
BD+CE=DE+BC=a+3a=4a,
∴BD=CE=2a.
在Rt△BDF中,∵∠BFD=90°,
∴DF===a,
∴sinB===
故選D.
點(diǎn)評:本題考查了平行線分線段成比例定理,等腰梯形的判定與性質(zhì),圓外切四邊形的性質(zhì),解直角三角形,綜合性較強(qiáng),難度適中.作出等腰梯形BCED的高DF、EG,設(shè)DE=a,用含a的代數(shù)式表示出BD是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖在△ABC中,∠ACB=90°,CD是邊AB上的高.那么圖中與∠A相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,∠ABC=50°,∠ACB=75°,點(diǎn)O是內(nèi)心,則∠BOC的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG平分∠CDE,DC=AE,
求證:CG=EG.
證明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB邊上的中線
∴E是AB的中點(diǎn)
∴DE=
1
2
AB
1
2
AB
(直角三角形斜邊上的中線等于斜邊的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三線合一
等腰三角形三線合一

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的兩點(diǎn),則圖中陰影部分的面積是
20
20

查看答案和解析>>

同步練習(xí)冊答案