【題目】某電腦銷售商試銷某一品牌電腦(出廠為/臺(tái))以/臺(tái)銷售時(shí),平均每月可銷售臺(tái),現(xiàn)為了擴(kuò)大銷售,銷售商決定降價(jià)銷售,在原來月份平均銷售量的基礎(chǔ)上,經(jīng)月份的市場調(diào)查,月份調(diào)整價(jià)格后,月銷售額達(dá)到元.已知電腦價(jià)格每臺(tái)下降元,月銷售量將上升臺(tái).

月份到月份銷售額的月平均增長率;

月份時(shí)該電腦的銷售價(jià)格.

【答案】 月份到月份銷售額的月平均增長率為; 月份時(shí)該電腦的銷售價(jià)格為元.

【解析】

設(shè)月份到月份銷售額的月平均增長率為,則依據(jù)題意可得3月份銷售額為,然后依據(jù)題意列出方程求解即可;

設(shè)月份電腦的銷售價(jià)格在每臺(tái)元的基礎(chǔ)上下降元,則可得3月份的單價(jià)為元,銷量為臺(tái),依據(jù)題意列出方程求解即可.

設(shè)月份到月份銷售額的月平均增長率為

由題意得:,

,(舍去)

月份到月份銷售額的月平均增長率為;

設(shè)月份電腦的銷售價(jià)格在每臺(tái)元的基礎(chǔ)上下降元,

由題意得:,

,,

,

當(dāng)時(shí),月份該電腦的銷售價(jià)格為不合題意舍去.

月份該電腦的銷售價(jià)格為元.

月份時(shí)該電腦的銷售價(jià)格為元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,點(diǎn)CBA延長線上一點(diǎn),CDOD點(diǎn),弦DECB,QAB上一動(dòng)點(diǎn),CA1CDO半徑的倍.

(1)O的半徑R;

(2)當(dāng)QAB運(yùn)動(dòng)的過程中,圖中陰影部分的面積是否發(fā)生變化?若發(fā)生變化,請(qǐng)你說明理由;若不發(fā)生變化,請(qǐng)你求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l上有一點(diǎn)P12,1),將點(diǎn)P1先向右平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)P2,點(diǎn)P2恰好在直線l上. 

1)求直線l所表示的一次函數(shù)的表達(dá)式;

2)若將點(diǎn)P2先向右平移3個(gè)單位,再向上平移6個(gè)單位得到點(diǎn)P3.請(qǐng)判斷點(diǎn)P3是否在直線l上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓內(nèi)接四邊形ABCD中,CD為△BAC的外角平分線,F為弧AD上一點(diǎn),BC=AF,延長DFBA的延長線交于E.

(1)求證:AD=BD;

(2)若AC=10,AF=3,DF:FE=3:2,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的爸爸和媽媽上山游玩,爸爸步行,媽媽乘坐纜車,相約在山頂纜車的終點(diǎn)會(huì)合.已知爸爸步行的路程是纜車所經(jīng)線路長的2.5倍,媽媽在爸爸出發(fā)后50分鐘才坐上纜車,纜車的平均速度為每分鐘180.圖中的折現(xiàn)反映了爸爸行走的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系.

1)爸爸行走的總路程是 米,他途中休息了 分鐘;

2)當(dāng)時(shí),之間的函數(shù)關(guān)系式是

3)爸爸休息之后行走的速度是每分鐘 米;

4)當(dāng)媽媽到達(dá)纜車終點(diǎn)是,爸爸離纜車終點(diǎn)的路程是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸交于點(diǎn)、與軸交于點(diǎn),直線軸交于點(diǎn),將直線沿直線翻折,點(diǎn)恰好落在軸上的點(diǎn),則直線對(duì)應(yīng)的函數(shù)關(guān)系式為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒l個(gè)單位長度的速度向點(diǎn)O運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長度的速度向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒.

(1)A、B兩點(diǎn)的坐標(biāo)。

(2)求當(dāng)t為何值時(shí),△APQ△AOB相似,并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).

(3)當(dāng)t=2時(shí),在坐標(biāo)平面內(nèi),是否存在點(diǎn)M,使以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,點(diǎn)、分別在、上,連接,、的平分線交于點(diǎn),、的平分線交于點(diǎn)

求證:四邊形是矩形.

小明在完成的證明后繼續(xù)進(jìn)行了探索,過點(diǎn),分別交于點(diǎn)、,過點(diǎn),分別交、于點(diǎn)、,得到四邊形.此時(shí),他猜想四邊形是菱形.請(qǐng)?jiān)谙铝锌驁D中補(bǔ)全他的證明思路.

小明的證明思路:由,,易證,四邊形是平行四邊形.要證是菱形,只要證.由已知條件________,,可證,故只要證,即證易證________,________,故只要證易證,________,故得,即可得證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰直角△ABC中,ACB=90°,P是線段BC上一動(dòng)點(diǎn)(與點(diǎn)B、C不重合),連接AP,延長BC至點(diǎn)Q,使得CQ=CP,過點(diǎn)QQH⊥AP于點(diǎn)H,交AB于點(diǎn)M

(1)當(dāng)AP平分BAC時(shí),試說明AM=AN.

(2)若PAC=m,求AMQ的大小(用含m的式子表示).

(3)用等式表示線段MBPQ之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案