分析 (1)連接DF,根據(jù)CD是圓直徑,可知∠CFD=90°即DF⊥BC,DF∥AC,推出∠BDF=∠A,在⊙O中∠BDF=∠GEF,所以∠GEF=∠A;因?yàn)镈是AB的中點(diǎn),所以CD=AD,易得∠DCE=∠A,由相似三角形的判定定理,易得結(jié)論.
(2)根據(jù)D是Rt△ABC斜邊AB的中點(diǎn),DC=DA,∠DCA=∠A,可證明△OME與△EMC相似,所以ME2=OM×MC,結(jié)合MD:CO=2:5,OM:MD=3:2,OM:MC=3:8,設(shè)OM=3xMC=8x,可求x=2,則直徑CD=10x=20;
解答 (1)證明:連接DF,
∵CD是圓直徑,
∴∠CFD=90°即DF⊥BC,
∵∠ACB=90°,
∴DF∥AC,
∴∠BDF=∠A,
∵在⊙O中,∠BDF=∠GEF,
∴∠GEF=∠A,
∵D是AB的中點(diǎn),
∴CD=AD,
∴∠DCE=∠A=∠GEF,
即∠MCE=∠MEO,
∵∠CME=∠EMO,
∴△MEO∽△MCE(AA);
(2)解:∵D是Rt△ABC斜邊AB的中點(diǎn),
∴DC=DA,
∴∠DCA=∠A,
又由(1)知∠GEF=∠A,
∴∠DCA=∠GEF,
又∵∠OME=∠EMC,
∴△OME∽△EMC,
∴$\frac{OM}{ME}=\frac{ME}{MC}$,
∴ME2=OM×MC,
又∵M(jìn)E=4$\sqrt{6}$,
∴OM×MC═96,
∵M(jìn)D:CO=2:5,
∴OM:MD=3:2,∴OM:MC=3:8,
設(shè)OM=3x,MC=8x,
∴3x×8x=96,
∴x=2,
CD=10x=20.
點(diǎn)評(píng) 本題主要考查了函數(shù)和幾何圖形的綜合運(yùn)用,解題的關(guān)鍵是會(huì)靈活的運(yùn)用函數(shù)圖象的性質(zhì)和交點(diǎn)的意義求出相應(yīng)的線段的長(zhǎng)度或表示線段的長(zhǎng)度,再結(jié)合具體圖形的性質(zhì)求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com