在同一坐標平面中,正比例函數(shù)y=kx(k≠0)和二次函數(shù)y=kx2-4的圖象可能是( 。
分析:先求出二次函數(shù)圖象與y軸的交點,再根據(jù)正比例函數(shù)圖象的特征與二次函數(shù)圖象的特征,分k>0與k<0兩種情況討論求解.
解答:解:當x=0時,y=k×02-4=-4,
所以,二次函數(shù)圖象與y軸的交點坐標為(0,-4),
①k>0時,正比例函數(shù)y=kx(k≠0)的圖象經(jīng)過第一、三象限,二次函數(shù)y=kx2-4的圖象開口向上,
②k<0時,正比例函數(shù)y=kx(k≠0)的圖象經(jīng)過第二、四象限,二次函數(shù)y=kx2-4的圖象開口向下,
縱觀各選項,只有C選項符合.
故選C.
點評:本題考查了二次函數(shù)圖象,正比例函數(shù)圖象,主要利用了二次函數(shù)圖象與y軸的交點坐標,開口方向以及一次函數(shù)圖象的k值與經(jīng)過的象限之間的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

先閱讀短文,再解答短文后面的問題.
規(guī)定了方向的線段稱為有向線段.比如,對于線段AB,規(guī)定以A為起點,B為終點,便可得到一條從A到B的有向線段.為強調(diào)其方向,我們在其終點B處畫上箭頭(如下圖-1).以A為起點,B為終點的有向線段記為
AB
(起點字母A寫在前面,終點字母B寫在后面).線段AB的長度叫做有向線AB的長度(或模),記為|
AB
|.顯然,有向線段
AB
和有向線段
BA
長度相同.方向不同,它們不是同一條有向線段.
對于同一平面內(nèi)的有向線段,我們可以在該平面建立直角坐標系進行研究(一般情況,直角坐標系的單位長度與有向線段的單位長度相同).比如,以坐標原點O(0,0)為起點,P(3,0)為終點的有向線段
OP
,其方向與x軸正方向相同,長度(或模)是|
OP
|=3.
問題:
(1)在如圖所示的平面直角坐標系中畫出
OA
有向線段,使得
OA
=3
2
,
OA
與x軸正半軸的夾角是45°,且與y軸的負半軸的夾角是45°;
(2)若有向線段
OB
的終點B的坐標為(3,
3
),試求出它的模及它與x軸正半軸的夾角;
(3)若點M、A、P在同一直線上,|
MA
|+|
AP
|=|
MP
|
成立嗎?試畫出示意圖加以說明.(示意圖可以不畫在平面直角坐標系中)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《直角三角形的邊角關系》中考題集(23):1.4 船有觸角的危險嗎(解析版) 題型:解答題

先閱讀短文,再解答短文后面的問題.
規(guī)定了方向的線段稱為有向線段.比如,對于線段AB,規(guī)定以A為起點,B為終點,便可得到一條從A到B的有向線段.為強調(diào)其方向,我們在其終點B處畫上箭頭(如下圖-1).以A為起點,B為終點的有向線段記為(起點字母A寫在前面,終點字母B寫在后面).線段AB的長度叫做有向線AB的長度(或模),記為||.顯然,有向線段和有向線段長度相同.方向不同,它們不是同一條有向線段.
對于同一平面內(nèi)的有向線段,我們可以在該平面建立直角坐標系進行研究(一般情況,直角坐標系的單位長度與有向線段的單位長度相同).比如,以坐標原點O(0,0)為起點,P(3,0)為終點的有向線段,其方向與x軸正方向相同,長度(或模)是||=3.
問題:
(1)在如圖所示的平面直角坐標系中畫出有向線段,使得=3,與x軸正半軸的夾角是45°,且與y軸的負半軸的夾角是45°;
(2)若有向線段的終點B的坐標為(3,),試求出它的模及它與x軸正半軸的夾角;
(3)若點M、A、P在同一直線上,成立嗎?試畫出示意圖加以說明.(示意圖可以不畫在平面直角坐標系中)

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《解直角三角形》中考題集(30):1.3 解直角三角形(解析版) 題型:解答題

先閱讀短文,再解答短文后面的問題.
規(guī)定了方向的線段稱為有向線段.比如,對于線段AB,規(guī)定以A為起點,B為終點,便可得到一條從A到B的有向線段.為強調(diào)其方向,我們在其終點B處畫上箭頭(如下圖-1).以A為起點,B為終點的有向線段記為(起點字母A寫在前面,終點字母B寫在后面).線段AB的長度叫做有向線AB的長度(或模),記為||.顯然,有向線段和有向線段長度相同.方向不同,它們不是同一條有向線段.
對于同一平面內(nèi)的有向線段,我們可以在該平面建立直角坐標系進行研究(一般情況,直角坐標系的單位長度與有向線段的單位長度相同).比如,以坐標原點O(0,0)為起點,P(3,0)為終點的有向線段,其方向與x軸正方向相同,長度(或模)是||=3.
問題:
(1)在如圖所示的平面直角坐標系中畫出有向線段,使得=3,與x軸正半軸的夾角是45°,且與y軸的負半軸的夾角是45°;
(2)若有向線段的終點B的坐標為(3,),試求出它的模及它與x軸正半軸的夾角;
(3)若點M、A、P在同一直線上,成立嗎?試畫出示意圖加以說明.(示意圖可以不畫在平面直角坐標系中)

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《解直角三角形》中考題集(23):1.4 解直角三角形(解析版) 題型:解答題

先閱讀短文,再解答短文后面的問題.
規(guī)定了方向的線段稱為有向線段.比如,對于線段AB,規(guī)定以A為起點,B為終點,便可得到一條從A到B的有向線段.為強調(diào)其方向,我們在其終點B處畫上箭頭(如下圖-1).以A為起點,B為終點的有向線段記為(起點字母A寫在前面,終點字母B寫在后面).線段AB的長度叫做有向線AB的長度(或模),記為||.顯然,有向線段和有向線段長度相同.方向不同,它們不是同一條有向線段.
對于同一平面內(nèi)的有向線段,我們可以在該平面建立直角坐標系進行研究(一般情況,直角坐標系的單位長度與有向線段的單位長度相同).比如,以坐標原點O(0,0)為起點,P(3,0)為終點的有向線段,其方向與x軸正方向相同,長度(或模)是||=3.
問題:
(1)在如圖所示的平面直角坐標系中畫出有向線段,使得=3,與x軸正半軸的夾角是45°,且與y軸的負半軸的夾角是45°;
(2)若有向線段的終點B的坐標為(3,),試求出它的模及它與x軸正半軸的夾角;
(3)若點M、A、P在同一直線上,成立嗎?試畫出示意圖加以說明.(示意圖可以不畫在平面直角坐標系中)

查看答案和解析>>

科目:初中數(shù)學 來源:2006年四川省達州市中考數(shù)學試卷(解析版) 題型:解答題

(2006•達州)先閱讀短文,再解答短文后面的問題.
規(guī)定了方向的線段稱為有向線段.比如,對于線段AB,規(guī)定以A為起點,B為終點,便可得到一條從A到B的有向線段.為強調(diào)其方向,我們在其終點B處畫上箭頭(如下圖-1).以A為起點,B為終點的有向線段記為(起點字母A寫在前面,終點字母B寫在后面).線段AB的長度叫做有向線AB的長度(或模),記為||.顯然,有向線段和有向線段長度相同.方向不同,它們不是同一條有向線段.
對于同一平面內(nèi)的有向線段,我們可以在該平面建立直角坐標系進行研究(一般情況,直角坐標系的單位長度與有向線段的單位長度相同).比如,以坐標原點O(0,0)為起點,P(3,0)為終點的有向線段,其方向與x軸正方向相同,長度(或模)是||=3.
問題:
(1)在如圖所示的平面直角坐標系中畫出有向線段,使得=3與x軸正半軸的夾角是45°,且與y軸的負半軸的夾角是45°;
(2)若有向線段的終點B的坐標為(3,),試求出它的模及它與x軸正半軸的夾角;
(3)若點M、A、P在同一直線上,成立嗎?試畫出示意圖加以說明.(示意圖可以不畫在平面直角坐標系中)

查看答案和解析>>

同步練習冊答案