如圖,已知AB⊥MN,垂足為點B,P是射線BN上的一個動點,AC⊥AP,∠ACP=∠BAP,AB=4,BP=x,CP=y,點C到MN的距離為線段CD的長.
(1)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(2)在點P的運動過程中,點C到MN的距離是否會發(fā)生變化?如果發(fā)生變化,請用x的代數(shù)式表示這段距離;如果不發(fā)生變化,請求出這段距離;
(3)如果圓C與直線MN相切,且與以BP為半徑的圓P也相切,求BP:PD的值.
(1)∵AB⊥MN,AC⊥AP,
∴∠ABP=∠CAP=90°.
又∵∠ACP=∠BAP,
∴△ABP△CAP.(1分)
BP
AP
=
AP
PC

x
x2+16
=
x2+16
y
.(1分)
∴所求的函數(shù)解析式為y=
x2+16
x
(x>0).(1分)

(2)CD的長不會發(fā)生變化.(1分)
延長CA交直線MN于點E.(1分)
∵AC⊥AP,
∴∠PAE=∠PAC=90°.
∵∠ACP=∠BAP,
∴∠APC=∠APE.
∴∠AEP=∠ACP.
∴PE=PC.
∴AE=AC.(1分)
∵AB⊥MN,CD⊥MN,
∴ABCD.
AB
CD
=
AE
CE
=
1
2
.(1分)
∵AB=4,
∴CD=8.(1分)

(3)∵圓C與直線MN相切,
∴圓C的半徑為8.(1分)
(i)當(dāng)圓C與圓P外切時,CP=PB+CD,即y=x+8,
x2+16
x
=x+8
,
∴x=2,(1分)
∴BP=2,
∴CP=y=2+8=10,
根據(jù)勾股定理得PD=6
∴BP:PD=
1
3
.(1分)
(ii)當(dāng)圓C與圓P內(nèi)切時,CP=|PB-CD|,即y=|x-8|,
x2+16
x
=|x-8|

x2+16
x
=x-8
x2+16
x
=8-x

∴x=-2(不合題意,舍去)或無實數(shù)解.(1分)
∴綜上所述BP:PD=
1
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,直線PA交⊙O于A、B兩點,AE是⊙O的直徑,點C是⊙O上一點,且AC平分∠PAE,過點C作CD⊥PA,垂足為點D.
(1)求證:CD與⊙O相切;
(2)若tan∠ACD=
1
2
,⊙O的直徑為10,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖中,PA,PB是⊙O的切線,點A,B為切點,AC是⊙O的直徑,∠ACB=50°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的直徑BC=4,過點C作⊙O的切線m,D是直線m上一點,且DC=2,A是線段BO上一動點,連接AD交⊙O于G,過點A作AD的垂線交直線m于點F,交⊙O于點H,連接GH交BC于E.
(1)當(dāng)點A是BO的中點時,求AF的長;
(2)若∠AGH=∠AFD,求△AGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,∠B=90°,AD=13厘米,BC=16厘米,CD=5厘米,AB為⊙O的直徑,動點P沿AD方向從點A開始向點D以1厘米/秒的速度運動,動點Q沿CB方向從點C開始向點B以2厘米/秒的速度運動,點P、Q分別從A、C兩點同時出發(fā),當(dāng)其中一點停止時,另一點也隨之停止運動.
(1)求⊙O的直徑;
(2)求四邊形PQCD的面積y關(guān)于P、Q運動時間t的函數(shù)關(guān)系式,并求當(dāng)四邊形PQCD為等腰梯形時,四邊形PQCD的面積;
(3)是否存在某一時刻t,使直線PQ與⊙O相切?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,延長弦BD到點C,使DC=BD,連接AC,過點D作DE⊥AC,垂足為E.
(1)判斷直線DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑為6,∠BAC=60°,延長ED交AB延長線于點F,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:在△ABC中,AB=BC=CA=2,D為BC延長線上一點,CD=1,P為AB上一動點(不運動至點A,B),以PC為直徑作⊙O交BC于M,連接PD,交⊙O于H,交AC于E,連接PM.
(1)設(shè)AP=t,S△PCD=S,求S關(guān)于t的函數(shù)解析式和t的取值范圍;
(2)過D作⊙O的切線DT,T為切點,試用含t的代數(shù)式表示DT的長;
(3)當(dāng)點P運動到AB中點時,求證:
S△PCD
S△PCE
=
CD
CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,點C在⊙O上,點P是直徑AB上的一點(不與A重合),過點P作AB的垂線交BC于點Q.
(1)在線段PQ上取一點D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關(guān)系,并說明理由.
(2)若cosB=
3
5
,BP=6,AP=1,求QC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連接DE.
(1)求證:DE是⊙O的切線;
(2)連接OE,若AB=4,AD=3,求OE的長.

查看答案和解析>>

同步練習(xí)冊答案