【題目】如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的8×9的網(wǎng)格中,已知△ABC的頂點(diǎn)均為網(wǎng)格線的交點(diǎn).

1)在給定的網(wǎng)格中,畫(huà)出△ABC關(guān)于直線AB對(duì)稱的△ABC1

2)將△ABC1繞著點(diǎn)O旋轉(zhuǎn)后能與△ABC重合,請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出點(diǎn)O的位置.

3)在給定的網(wǎng)格中,畫(huà)出以點(diǎn)C為位似中心,將△ABC放大為原來(lái)的2倍后得到的△A2B2C

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析

【解析】

1)根據(jù)網(wǎng)格,畫(huà)出△ABC關(guān)于直線AB對(duì)稱的△ABC1即可;
2)根據(jù)旋轉(zhuǎn)的性質(zhì),△ABC1繞著點(diǎn)O旋轉(zhuǎn)后能與△ABC重合,即可在網(wǎng)格中畫(huà)出點(diǎn)O的位置;
3)根據(jù)位似變換,畫(huà)出以點(diǎn)C為位似中心,將△ABC放大為原來(lái)的2倍后得到的△A2B2C即可.

1)如圖所示的△ABC1即為所求;

2)點(diǎn)O的位置如圖所示;

3)如圖所示的△A2B2C即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小帶和小路兩個(gè)人開(kāi)車從A城出發(fā)勻速行駛至B城.在整個(gè)行駛過(guò)程中,小帶和小路兩人車離開(kāi)A城的距離y(km)與行駛的時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.有下列結(jié)論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當(dāng)小帶和小路的車相距50 km時(shí),tt.其中正確的結(jié)論有(  )

A. ①②③④B. ①②④

C. ①②D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一張矩形紙條ABCD,AB5cm,BC2cm,點(diǎn)M,N分別在邊AB,CD上,CN1cm.現(xiàn)將四邊形BCNM沿MN折疊,使點(diǎn)B,C分別落在點(diǎn)B',C'上.當(dāng)點(diǎn)B'恰好落在邊CD上時(shí),線段BM的長(zhǎng)為_____cm;在點(diǎn)M從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B的過(guò)程中,若邊MB'與邊CD交于點(diǎn)E,則點(diǎn)E相應(yīng)運(yùn)動(dòng)的路徑長(zhǎng)為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知?jiǎng)狱c(diǎn)A在函數(shù)的圖象上,ABx軸于點(diǎn)B,ACy軸于點(diǎn)C,延長(zhǎng)CA交以A為圓心AB長(zhǎng)為半徑的圓弧于點(diǎn)E,延長(zhǎng)BA交以A為圓心AC長(zhǎng)為半徑的圓弧于點(diǎn)F,直線EF分別交x軸、y軸于點(diǎn)M、N,當(dāng)NF4EM時(shí),圖中陰影部分的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張長(zhǎng)方形紙片,沿對(duì)角線折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)為,相交于點(diǎn),則下列結(jié)論中不一定正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓桌正上方的燈泡O發(fā)出的光線照射桌面后,在地面上形成圓形陰影.已知桌面的直徑為1.2m,桌面距離地面1m,若燈泡O距離地面3m,則地面上陰影部分的面積為( 。

A.0.36πm2B.0.81πm2C.1.44πm2D.3.24πm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點(diǎn)E,過(guò)點(diǎn)EEFBC,垂足為F,延長(zhǎng)CDGB的延長(zhǎng)線于點(diǎn)P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn),點(diǎn)軸正半軸上,以為一邊作等腰直角,使得點(diǎn)在第一象限.

1)求出所有符合題意的點(diǎn)的坐標(biāo);

2)在內(nèi)部存在一點(diǎn),使得之和最小,請(qǐng)求出這個(gè)和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線為常數(shù),)與軸交于兩點(diǎn),與軸交于點(diǎn).設(shè)該拋物線的頂點(diǎn)為,其對(duì)稱軸與軸的交點(diǎn)為

1)求該拋物線的解析式;

2為線段(含端點(diǎn))上一點(diǎn),軸上一點(diǎn),且

①求的取值范圍;

②當(dāng)取最大值時(shí),將線段向上平移個(gè)單位長(zhǎng)度,使得線段與拋物線有兩個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案