【題目】如圖,平面內(nèi)的兩條直線l1、l2,點(diǎn)A、B在直線l2上,過點(diǎn)A、B兩點(diǎn)分別作直線l1的垂線,垂足分別為A1、B1,我們把線段A1B1叫做線段AB在直線l2上的正投影,其長(zhǎng)度可記作TABCDTAB,l2,特別地,線段AC在直線l2上的正投影就是線段A1C,請(qǐng)依據(jù)上述定義解決如下問題.

1)如圖1,在銳角ABC中,AB=5,TAC,AB=3,則TBC,AB= ;

2)如圖2,在Rt△ABC中,∠ACB=90°TAC,AB=4,TBC,AB=9,求△ABC的面積;

3)如圖3,在鈍角△ABC中,∠A=60°,點(diǎn)DAB邊上,∠ACD=90°TAD,AC=2,TBC,AB=6,求TBC,CD.

【答案】(1)2 ;(2)ABC的面積=39;(3)TBC,CD=

【解析】

(1)如圖1,過CCH⊥AB,根據(jù)正投影的定義求出BH的長(zhǎng)即可;

(2)如圖2,過點(diǎn)CCH⊥ABH,由正投影的定義可知AH=4,BH=9,再根據(jù)相似三角形的性質(zhì)求出CH的長(zhǎng)即可解決問題;

(3)如圖3,過CCH⊥ABH,過BBK⊥CDK,求出CD、DK即可得答案.

(1)如圖1,過CCH⊥AB,垂足為H,

T(ACAB)=3,

AH=3

AB=5,

BH=AB-AH=2

T(BC,AB)=BH=2

故答案為:2;

(2)如圖2,過點(diǎn)CCH⊥ABH,

∠AHC=CHB=90°,

∴∠B+∠HCB=90°

∵∠ACB=90°,

∠B+A=90°

∴∠A=∠HCB,

∴△ACH∽△CBH

CHBH=AHCH,

∴CH2=AH·BH

∵T(AC,AB)=4,T(BCAB)=9,

∴AH=4,BH=9

AB=AH+BH=13,CH=6,

∴SABC=(AB·CH)÷2=13×6÷2=39

(3)如圖3,過CCH⊥ABH,過BBK⊥CDK,

∠ACD=90°T(AD,AC)=2

AC=2,

∵∠A=60°,

∠ADC=BDK=30°

CD=AC·tan60°=2,AD=2AC=4,AH=AC=1

∴DH=4-1=3,

∵T(BCAB)=6,CH⊥AB,

∴BH=6,

DB=BH-DH=3

RtBDK中,∠K=90°BD=3,∠BDK=30°

∴DK=BD·cos30°=,

∴T(BCCD)=CK=CD+DK=+=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC是等邊三角形,點(diǎn)D是射線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為邊的等邊三角形,過點(diǎn)EBC的平行線,分別交射線ABAC于點(diǎn)F、G,連接BE

1)如圖(a)所示,當(dāng)點(diǎn)D在線段BC上時(shí).

①求證:△AEB≌△ADC;

②探究四邊形BCGE是怎樣特殊的四邊形?并說明理由;

2)如圖(b)所示,當(dāng)點(diǎn)DBC的延長(zhǎng)線上時(shí),直接寫出(1)中的兩個(gè)結(jié)論是否成立;

3)在(2)的情況下,當(dāng)點(diǎn)D運(yùn)動(dòng)到什么位置時(shí),四邊形BCGE是菱形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小亮分別從甲地和乙地同時(shí)出發(fā),沿同一條路相向而行,小明開始跑步,中途改為步行,到達(dá)乙地恰好用小亮騎自行車以的速度直接到甲地,兩人離甲地的路程與各自離開出發(fā)地的時(shí)間之間的函數(shù)圖象如圖所示,

甲、乙兩地之間的路程為______m,小明步行的速度為______

求小亮離甲地的路程y關(guān)于x的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;

求兩人相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在邊上,點(diǎn)為邊上一動(dòng)點(diǎn),連接關(guān)于所在直線對(duì)稱,點(diǎn)分別為的中點(diǎn),連接并延長(zhǎng)交所在直線于點(diǎn),連接.當(dāng)為直角三角形時(shí),的長(zhǎng)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,ECD上一點(diǎn),若△ADE沿直線AE翻折,使點(diǎn)D落在BC邊上點(diǎn)D′處.FAD上一點(diǎn),且DFCD',EFBD相交于點(diǎn)G,AD′與BD相交于點(diǎn)HDEBD,HG4,則BD__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖,小東在教學(xué)樓距地面9米高的窗口C處,測(cè)得正前方旗桿頂部A點(diǎn)的仰角為37°,旗桿底部B點(diǎn)的俯角為45°,升旗時(shí),國(guó)旗上端懸掛在距地面2.25米處,若國(guó)旗隨國(guó)歌聲冉冉升起,并在國(guó)歌播放45秒結(jié)束時(shí)到達(dá)旗桿頂端,則國(guó)旗應(yīng)以多少米/秒的速度勻速上升?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABC是⊙O的內(nèi)接三角形,BT為⊙O的切線,B為切點(diǎn),P為直線AB上一點(diǎn),過PBC的平行線交直線BT于點(diǎn)E,交直線AC于點(diǎn)F

(1)如圖 (1)所示,當(dāng)P在線段AB上時(shí),求證:PA·PBPE·PF;

(2)如圖 (2)所示,當(dāng)P為線段BA延長(zhǎng)線上一點(diǎn)時(shí),第(1)題的結(jié)論還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果店經(jīng)銷進(jìn)價(jià)分別為/千克、/千克的甲、乙兩種水果,下表是近兩天的銷售情況:(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=售價(jià)-進(jìn)價(jià))

時(shí)間

甲水果銷量

乙水果銷量

銷售收入

周五

千克

千克

周六

千克

千克

1)求甲、乙兩種水果的銷售單價(jià);

2)若水果店準(zhǔn)備用不多于元的資金再購(gòu)進(jìn)兩種水果共千克,求最多能夠進(jìn)甲水果多少千克?

3)在(2)的條件下,水果店銷售完這千克水果能否實(shí)現(xiàn)利潤(rùn)為元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解七、八年級(jí)學(xué)生對(duì)新冠傳播與防治知識(shí)的掌握情況,從七、八年級(jí)各隨機(jī)抽取50名學(xué)生進(jìn)行測(cè)試,并對(duì)成績(jī)(百分制)進(jìn)行整理和分析.部分信息如下:

a.七年級(jí)成績(jī)頻數(shù)分布直方圖:

b.七年級(jí)成績(jī)?cè)?/span>70m80這一組的是:

70,7272,75,7676,77,7778,79,79

c.七、八年級(jí)成績(jī)的平均數(shù)、中位數(shù)如下:

年級(jí)

平均數(shù)

中位數(shù)

76.9

a

79.2

79.5

根據(jù)以上信息,回答下列問題:

1)在這次測(cè)試中,七年級(jí)在70分以上的有  人,表格中a的值為  

2)在這次測(cè)試中,七年級(jí)學(xué)生甲與八年級(jí)學(xué)生乙的成績(jī)都是79分,請(qǐng)判斷兩位學(xué)生在各自年級(jí)的排名誰(shuí)更靠前;

3)該校七年級(jí)學(xué)生有500人,假設(shè)全部參加此次測(cè)試,請(qǐng)你估計(jì)七年級(jí)成績(jī)超過平均數(shù)76.9分的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案