精英家教網(wǎng)如圖,已知半徑為R的半圓O,過直徑AB上一點(diǎn)C,作CD⊥AB交半圓于點(diǎn)D,且CD=
3
2
R,試求AC的長.
分析:由于點(diǎn)C的位置不能確定,故應(yīng)分點(diǎn)C在A、O之間與C點(diǎn)在B、O之間兩種情況畫出圖形,再根據(jù)勾股定理求解即可.
解答:解:(1)當(dāng)C點(diǎn)在A、O之間時,如圖甲.
由勾股定理OC=
R2-(
3
2
R)2
=
1
2
R,故AC=R-
1
2
R=
1
2
R;
(2)當(dāng)C點(diǎn)在B、O之間時,如圖乙.
由勾股定理知OC=
R2-(
3
2
R)2
=
1
2
R,故AC=R+
1
2
R=
3
2
R.
故答案為:
1
2
R或
3
2
R.
精英家教網(wǎng)
點(diǎn)評:本題考查的是圓心角、弧、弦的關(guān)系及勾股定理,解答此題的關(guān)鍵是分兩種情況畫出圖形,再利用勾股定理求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知半徑為18cm的圓形紙片,如果要在這張紙片上裁剪出一個扇形作為圓錐的側(cè)面,一個圓作為圓錐的底面,試問該如何裁剪,能使圓錐的底面圓面積盡量大,并且扇形的弧長恰好與圓錐底面圓的周長相配套(即兩者長度相等),求出這時圓錐的表面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知半徑為5cm的⊙O是△ABC的外接圓,CD是AB邊上的高,AE是⊙O的直徑.若AC=6cm,BC=9cm.求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知半徑為1的⊙O1與x軸交于A,B兩點(diǎn),圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點(diǎn).
(1)求二次函數(shù)的解析式;
(2)射線OM從y軸正半軸開始,繞點(diǎn)O順時針方向以每秒15°的速度旋轉(zhuǎn),幾秒后射線OM與⊙O1相切?(切點(diǎn)為M)
(3)當(dāng)射線OM與⊙O1相切時,在射線OM上是否存在一點(diǎn)P,使得以P,O,A為頂點(diǎn)的三角形與△OO1M相似?若存在,請求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知半徑為1的⊙O1與x軸交于A,B兩點(diǎn),OM為⊙O1的切線,切點(diǎn)為M,圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點(diǎn).
(1)求二次函數(shù)的解析式.
(2)求出圖中陰影部分的面積.
(3)求切線OM的函數(shù)解析式.
(4)線段OM上是否存在一點(diǎn)P,使得以P,O,A為頂點(diǎn)的三角形與△OO1M相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•徐州模擬)如圖,已知半徑為1的⊙O1與x軸交于A、B兩點(diǎn),經(jīng)過原點(diǎn)的直線MN切⊙O1于點(diǎn)M,圓心O1的坐標(biāo)為(2,0).
(1)求切線MN的函數(shù)解析式;
(2)線段OM上是否存在一點(diǎn)P,使得以P、O、A為頂點(diǎn)的三角形與△OO1M相似?若存在,請求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)若將⊙O1沿著x軸的負(fù)方向以每秒1個單位的速度移動;同時將直線MN以每秒2個單位的速度向下平移,設(shè)運(yùn)動時間為t(t>0),求t為何值時,直線MN再一次與⊙O1相切?(本小題保留3位有效數(shù)字)

查看答案和解析>>

同步練習(xí)冊答案