2.解方程:
(1)(x-1)(x+2)=2(x+2)
(2)2x2-5x-3=0.

分析 (1)移項后將左邊因式分解即可得;
(2)左邊用十字相乘法因式分解即可得.

解答 解:(1)(x-1)(x+2)-2(x+2)=0
(x+2)(x-3)=0,
∴x+2=0或x-3=0,
解得:x=-2或x=3;

(2)左邊因式分解可得:(x-3)(2x+1)=0,
∴x-3=0或2x+1=0,
解得:x=3或x=-$\frac{1}{2}$.

點評 本題主要考查因式分解法解一元二次方程,因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.已知△ABC中,AE為BC邊上的高線,若∠ABC=50°,∠CAE=20°,則∠ACB=70或110°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,大正方形的邊長為a,小正方形的邊長為b,
(1)用代數(shù)式表示陰影部分的面積;
(2)當(dāng)a=10cm,b=4cm時,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.解下列方程
(1)x2-4x+1=0         
(2)2x2+5x+3=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.下列結(jié)論:①一個三角形的3個外角的度數(shù)之比為2:3:4,則與之相應(yīng)的3個內(nèi)角度數(shù)之比為5:3:1;②在△ABC中,若∠A=2∠B=3∠C,則△ABC為直角三角形;③一個多邊形的邊數(shù)每增加一條,這個多邊形的內(nèi)角和就增加180°;④一個五邊形最多有3個內(nèi)角是直角;⑤兩條直線被第三條直線所截,同位角的角平分線互相平行.其中正確結(jié)論有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.在1:200 000的地圖上量得兩地間的距離是4.5cm,試用科學(xué)記數(shù)法表示這兩地間的實際距離.(單位:m)(寫出計算過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.某區(qū)進行生態(tài)城市建設(shè),需將A、B、C三個小區(qū)中的A區(qū)搬遷到D處成立新區(qū).其中A與D關(guān)于直線BC對稱.
(1)根據(jù)要求在下圖中確定D區(qū)的位置.
(2)為引領(lǐng)社區(qū)居民健康文明生活,現(xiàn)計劃建立一個社區(qū)文化廣場E,要求廣場E到B、C、D三個小區(qū)的距離相等.請你利用尺規(guī)作圖的方法確定點E的位置.(要求保留作圖痕跡,不用說明步驟)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.一個正方形的面積為5,將它分成9個相同的正方形,求每個正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.如圖,以直角三角形①的三邊為邊向外作正方形,再分別以所得的兩個小正方形的邊作斜邊向外作直角三角形②、③,再分別以直角三角形②、③的直角邊為邊向外作正方形,若直角三角形①的斜邊長為2,則圖中所有正方形的面積為12.

查看答案和解析>>

同步練習(xí)冊答案