【題目】如圖,在Rt△ABC中,∠A=90°,∠ACB=30°,AC=10,CD是角平分線(xiàn).
(1)如圖1,若E是AC邊上的一個(gè)定點(diǎn),在CD上找一點(diǎn)P,使PA+PE的值最;
(2)如圖2,若E是AC邊上的一個(gè)動(dòng)點(diǎn),在CD上找一點(diǎn)P,使PA+PE的值最小,并直接寫(xiě)出其最小值.
【答案】(1)點(diǎn)P位置見(jiàn)解析;(2)點(diǎn)P位置見(jiàn)解析,5.
【解析】
(1)如圖,過(guò)D作DF⊥BC于F,過(guò)F作EF⊥AC交CD于P,于是得到結(jié)論;
(2)如圖,過(guò)D作DF⊥BC于F,過(guò)F作EF⊥AC交CD于P,則此時(shí),PA+PE的值最;PA+PE的最小值=EF,根據(jù)角平分線(xiàn)的性質(zhì)得到DA=DF,即點(diǎn)A與點(diǎn)F關(guān)于CD對(duì)稱(chēng),根據(jù)直角三角形的性質(zhì)即可得到結(jié)論.
(1)如圖,
過(guò)D作DF⊥BC于F,過(guò)F作EF⊥AC交CD于P,
則此時(shí),PA+PE的值最;
點(diǎn)P即為所求;
(2)如圖,過(guò)D作DF⊥BC于F,過(guò)F作EF⊥AC交CD于P,
則此時(shí),PA+PE的值最小;
PA+PE的最小值=EF,
∵CD是角平分線(xiàn),∠BAC=90°,
∴DA=DF,
即點(diǎn)A與點(diǎn)F關(guān)于CD對(duì)稱(chēng),
∴CF=AC=10,
∵∠ACB=30°,
∴EF=CF=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校對(duì)初三學(xué)生進(jìn)行物理、化學(xué)實(shí)驗(yàn)操作能力測(cè)試.物理、化學(xué)各有3個(gè)不同的操作實(shí)驗(yàn)題目,物理實(shí)驗(yàn)分別用①、②、③表示,化學(xué)實(shí)驗(yàn)分別用a、b、c表示.測(cè)試時(shí)每名學(xué)生每科只操作一個(gè)實(shí)驗(yàn),實(shí)驗(yàn)的題目由學(xué)生抽簽確定,第一次抽簽確定物理實(shí)驗(yàn)題目,第二次抽簽確定化學(xué)實(shí)驗(yàn)題目.王剛同學(xué)對(duì)物理的①、②號(hào)實(shí)驗(yàn)和化學(xué)的b、c號(hào)實(shí)驗(yàn)準(zhǔn)備得較好.請(qǐng)用畫(huà)樹(shù)狀圖(或列表)的方法,求王剛同學(xué)同時(shí)抽到兩科都準(zhǔn)備得較好的實(shí)驗(yàn)題目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道對(duì)于一個(gè)圖形,通過(guò)不同的方法計(jì)算圖形的面積可以得到一個(gè)數(shù)學(xué)等式.
例如:由圖1可得到(a+b)=a+2ab+b.
圖1 圖2 圖3
(1)寫(xiě)出由圖2所表示的數(shù)學(xué)等式:_____________________;寫(xiě)出由圖3所表示的數(shù)學(xué)等式:_____________________;
(2)利用上述結(jié)論,解決下面問(wèn)題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD,BE分別是∠BAC,∠ABC的角平分線(xiàn).
(1)若∠C=70°,∠BAC=60°,則∠BED的度數(shù)是 ;若∠BED=50°,則∠C的度數(shù)是 .
(2)探究∠BED與∠C的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y是x的反比例函數(shù),且x=8時(shí),y=12.
(1)寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)如果自變量x的取值范圍是2≤x≤3,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
小聰在解方程組時(shí),發(fā)現(xiàn)方程組中①和②之間存在一定的關(guān)系,他發(fā)現(xiàn)了一種“整體代換”法,具體解法如下:
解:將方程②變形為:
即
把方程①代入方程③得:解得
把代入方程①得
∴方程組的解是
(1)模仿小聰?shù)慕夥,解方程組
(2)已知x,y滿(mǎn)足方程組,解答:
(ⅰ)求的值;
(ⅱ)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題 ——
(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關(guān)系,并說(shuō)明理由.
(2)結(jié)論應(yīng)用:
①如圖2,點(diǎn)M、N在反比例函數(shù)y= (k>0)的圖象上,過(guò)點(diǎn)M作ME⊥y軸,垂足分別為E,F(xiàn),試證明:MN∥EF;
②若①中的其他條件不變,只改變點(diǎn)M,N的位置如圖3所示,請(qǐng)判斷MN與EF是否平行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:點(diǎn)P是內(nèi)一點(diǎn).
求證:;
若PB平分,PC平分,,求的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com