如圖,AB∥CD,分別探討下面四個(gè)圖形中∠APC與∠PAB、∠PCD的關(guān)系,
(1)直接寫(xiě)出四個(gè)結(jié)論:
∠APC=∠PAB+∠PCD
∠APC=∠PAB+∠PCD
;
∠PAB+∠APC+∠PCD=360°
∠PAB+∠APC+∠PCD=360°
;
∠PAB=∠APC+∠PCD
∠PAB=∠APC+∠PCD

∠PCD=∠PAB+∠APC
∠PCD=∠PAB+∠APC
;
(2)請(qǐng)你從所得到的關(guān)系中任選一個(gè)加以說(shuō)明.
分析:(1)①過(guò)點(diǎn)P作PE∥AB,利用平行線的性質(zhì),易得∠APC=∠1+∠2=∠PAB+∠PCD;
②過(guò)點(diǎn)P作PE∥AB,利用平行線的性質(zhì),易得∠PAB=∠APC+∠1=∠APC+∠PAD;
③延長(zhǎng)BA交PC于點(diǎn)E,利用平行線與三角形外角的性質(zhì),可求得答案;
④利用平行線與三角形外角的性質(zhì),可求得答案.
(2)根據(jù)(1)中的結(jié)論,求解即可.
解答:解:(1)①∠APC=∠PAB+∠PCD,
過(guò)點(diǎn)P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠1=∠PAB,∠2=∠PCD,
∴∠APC=∠1+∠2=∠PAB+∠PCD;

②∠PAB+∠APC+∠PCD=360°.
過(guò)點(diǎn)P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠1+∠PAB=180°,∠2+∠PCD=180°,
∴∠PAB+∠APC+∠PCD=360°;

③∠PAB=∠APC+∠PCD.
延長(zhǎng)BA,交PC于點(diǎn)E,
∵AB∥CD,
∴∠1=∠PCD,
∴∠PAB=∠APC+∠1=∠APC+∠PAD;

④∠PCD=∠PAB+∠APC,
∵AB∥CD,
∴∠1=∠PCD,
∴∠PCD=∠1=∠APC+∠PCD;
故答案為:①∠APC=∠PAB+∠PCD,②∠PAB+∠APC+∠PCD=360°,③∠PAB=∠APC+∠PCD,④∠PCD=∠PAB+∠APC;

(2)選擇①.
證明:過(guò)點(diǎn)P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠1=∠PAB,∠2=∠PCD,
∴∠APC=∠1+∠2=∠PAB+∠PCD.
點(diǎn)評(píng):此題考查了平行線的性質(zhì)以及三角形外角的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

39、填寫(xiě)推理理由
(1)已知:如圖,D、F、E分別是BC、AC、AB上的點(diǎn),DF∥AB,DE∥AC,試說(shuō)明∠EDF=∠A.
解:∵DF∥AB(
已知

∴∠A+∠AFD=180°(
兩直線平行,同旁內(nèi)角互補(bǔ)

∵DE∥AC(
已知

∴∠AFD+∠EDF=180°(
兩直線平行,同旁內(nèi)角互補(bǔ)

∴∠A=∠EDF(
同角的補(bǔ)角相等


(2)如圖,AB∥CD,∠1=∠2,∠3=∠4,試說(shuō)明AD∥BE.
解:∵AB∥CD(已知)
∴∠4=∠
BAF
兩直線平行,同位角相等

∵∠3=∠4(已知)
∴∠3=∠
BAF
等量代換

∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(
等式的性質(zhì)

即∠
BAF
=∠
DAC

∴∠3=∠
DAC
等量代換

∴AD∥BE(
內(nèi)錯(cuò)角相等,兩直線平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB∥CD,BO:OC=1:4,點(diǎn)E、F分別是OC、OD的中點(diǎn),則EF:AB的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB∥CD、AD∥CE,F(xiàn)、G分別是AC和FD的中點(diǎn),過(guò)G的直線依次交AB、AD、CD、CE于點(diǎn)M、N、P、Q,
求證:MN+PQ=2PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB∥CD.
(1)如果∠BAE=∠DCE=45°,求∠E的度數(shù).請(qǐng)將下面解題過(guò)程補(bǔ)充完整.
∵AB∥CD(已知)精英家教網(wǎng)
∴∠BAC+∠DCA=180°(
 

∴∠EAC+∠BAE+∠ACE+∠DCE=180°∵∠BAE=∠DCE=45°(已知)
∴∠EAC+
 
+∠ACE+
 
=180°(
 

∴∠EAC+∠ACE=
 

∵∠EAC+∠ACE+∠E=180°(
 

∴∠E=180°-(
 
)=
 


(2)如果AE、CE分別是∠BAC、∠DCA的平分線,(1)中的結(jié)論還成立嗎?試說(shuō)明理由.
(3)如果AE、CE分別是∠BAC、∠DCA內(nèi)部的任意射線.求證:∠AEC=∠BAE+∠DCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB∥CD,BO:CO=1:4,點(diǎn)E、F分別是OC、OD的中點(diǎn),則AB:EF的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案