(12分) 如圖,△ABC內(nèi)接于⊙O,且AB=AC,點D在⊙O上,AD⊥AB于點A, AD與 BC

   交于點E,F(xiàn)在DA的延長線上,且AF=AE.

    (1)求證:BF是⊙O的切線;

    (2)若AD=4,,求BC的長.

 

(2)BC=4.8;

解析:

(1)由AD⊥AB可知BD是圓O的直徑 

因為AE=AF且AB⊥EF   所以 ∠ABF=∠ABC=∠C=∠D

所以∠DBF=∠ABF+∠ABD=∠D+∠ABD=90°

所以BF是圓O切線

(2)由(1)有∠ABF=∠D=∠C 所以cosD=cosC=cos∠ABF=4/5

在Rt△ABD中 AD=4 所以DB=5 所以AB=3 所以AC=3

過點A作AM⊥BC于點M 則可知M是BC中點

并且在Rt△ACM中 CM=ACcosC=12/5

所以 BC=2CM=24/5=4.8

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(A類12分)如圖1,矩形ABCD沿著BE折疊后,點C落在AD邊上的點F處.如果∠ABF=50°,求∠CBE的度數(shù).
(B類13分)如圖2,在△ABC中,已知AC=8cm,AB=6cm,E是AC上的點,DE平分∠BEC,且DE⊥BC,垂足為D,求△ABE的周長.
(C類14分)如圖3,在△ABC中,已知AD是∠BAC的平分線,DE、DF分別垂直于AB、AC,垂足分別為E、F,且D是BC的中點,你認為線段EB與FC相等嗎?如果相等,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題12分)如圖,正方形ABCD的邊長是2,邊BC在x軸上,邊AB在y軸上,,將一把三角尺如圖放置,其中M為AD的中點,逆時針旋轉(zhuǎn)三角尺.
(1)當三角尺的一邊經(jīng)過C點時,此時三角尺的另一邊和AB邊交于點,求此時直線PM的解析式;
(2)繼續(xù)旋轉(zhuǎn)三角尺,三角尺的一邊與x軸交于點G, 三角尺的另一邊與AB交于,PM的延長線與CD的延長線交于點F,若三角形GF的面積為4,求此時直線PM的解析式;
(3)當旋轉(zhuǎn)到三角尺的一邊經(jīng)過點B,另一直角邊的延長線與x軸交于點G,,求此時三角形GOF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省杭州市九年級12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題12分)如圖,二次函數(shù)的圖象與x軸交于兩個不同的點A(-2,0)、B(4,0),與y軸交于點C(0,3),連結(jié)BC、AC,該二次函數(shù)圖象的對稱軸與x軸相交于點D.

(1)求這個二次函數(shù)的解析式、點D的坐標及直線BC的函數(shù)解析式;

(2)點Q在線段BC上,使得以點Q、D、B為頂點的三角形與△相似,求出點Q的坐標;

(3)在(2)的條件下,若存在點Q,請任選一個Q點求出△外接圓圓心的坐標.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年浙江省九年級12月月考數(shù)學(xué)卷 題型:解答題

(本題12分)如圖,拋物線經(jīng)過的三個頂點,已知軸,點軸上,點軸上,且

1.(1)求拋物線的對稱軸;

2.(2)寫出A,B,C三點的坐標(A,B,C三點的坐標只需寫出答案),并求拋物線的解析式;

3.(3)探究:若點是拋物線對稱軸上且在軸下方的動點,是否存在是等腰三角形.若存在,求出所有符合條件的點坐標;不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣東佛山卷)數(shù)學(xué) 題型:解答題

(2011內(nèi)蒙古赤峰,22, 12分)如圖,等圓⊙和⊙相交于A、B兩點,⊙

(1)求證:BM是⊙的切線;

(2)求的長。

                            

 

查看答案和解析>>

同步練習(xí)冊答案