【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)DDEACAC的延長(zhǎng)線于點(diǎn)E,連接BD

1)求證:DE是⊙O的切線;

2)若BD3AD4,則DE

【答案】1)見(jiàn)解析;(2

【解析】

1)連接OD,如圖,先證明ODAE,再利用DEAE得到ODDE,然后根據(jù)切線的判定定理得到結(jié)論;

2)證明△ABD∽△ADE,通過(guò)線段比例關(guān)系求出DE的長(zhǎng).

1)證明:連接OD

AD平分∠BAC

∴∠BAD=∠DAC

OAOD

∴∠BAD=∠ODA

∴∠ODA=∠DAC

ODAE

∴∠ODE+∠E180°

DEAE

∴∠E90°

∴∠ODE180°-∠E180°90°90°,即ODDE

∵點(diǎn)D在⊙O

DE是⊙O的切線.

2)∵AB是⊙O的直徑,

∴∠ADB=90°

AD平分∠BAC,

∴∠BAD=DAE,

在△ABD和△ADE中,

,

∴△ABD∽△ADE,

,

BD3AD4,AB==5

DE==.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:⊙O上有三個(gè)點(diǎn)AB,C,∠BAC70°,請(qǐng)畫(huà)出要求的角,并標(biāo)注.

1)畫(huà)一個(gè)140°的圓心角;(2)畫(huà)一個(gè)110°的圓周角;(3)畫(huà)一個(gè)20°的圓周角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀以下材料,并完成相應(yīng)的任務(wù):

任務(wù):

1)設(shè)Pa),Rb),求直線OM的函數(shù)解析式(用含ab的代數(shù)式表示),并說(shuō)明Q點(diǎn)在直線OM上;

2)證明:∠MOB=AOB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三點(diǎn)A0,0),B5,12),C140),則△ABC內(nèi)心的坐標(biāo)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)代城市綠化帶在不斷擴(kuò)大,綠化用水的節(jié)約是一個(gè)非常重要的問(wèn)題.

如圖1、圖2所示,某噴灌設(shè)備由一根高度為0.64 m的水管和一個(gè)旋轉(zhuǎn)噴頭組成,水管豎直安裝在綠化帶地面上,旋轉(zhuǎn)噴頭安裝在水管頂部(水管頂部和旋轉(zhuǎn)噴頭口之間的長(zhǎng)度、水管在噴灌區(qū)域上的占地面積均忽略不計(jì)),旋轉(zhuǎn)噴頭可以向周?chē)鷩姵龆喾N拋物線形水柱,從而在綠化帶上噴灌出一塊圓形區(qū)域.現(xiàn)測(cè)得噴的最遠(yuǎn)的水柱在距離水管的水平距離3 m處達(dá)到最高,高度為1 m

1)求噴灌出的圓形區(qū)域的半徑;

2)在邊長(zhǎng)為16 m的正方形綠化帶上固定安裝三個(gè)該設(shè)備,噴灌區(qū)域可以完全覆蓋該綠化帶嗎?如果可以,請(qǐng)說(shuō)明理由;如果不可以,假設(shè)水管可以上下調(diào)整高度,求水管高度為多少時(shí),噴灌區(qū)域恰好可以完全覆蓋該綠化帶.(以上需要畫(huà)出示意圖,并有必要的計(jì)算、推理過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形ABCD,對(duì)角線ACBD相交于點(diǎn)O,AC6,BD8.點(diǎn)EAB邊上一點(diǎn),求作矩形EFGH,使得點(diǎn)FG、H分別落在邊BCCD、AD上.設(shè) AEm

1)如圖①,當(dāng)m1時(shí),利用直尺和圓規(guī),作出所有滿(mǎn)足條件的矩形EFGH;(保留作圖痕跡,不寫(xiě)作法)

2)寫(xiě)出矩形EFGH的個(gè)數(shù)及對(duì)應(yīng)的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ABAC10,tanA2,BEAC于點(diǎn)E,D是線段BE上的一個(gè)動(dòng)點(diǎn),則的最小值是( )

A. B. C. D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“五一”小長(zhǎng)假期間,某超市為了吸引顧客,設(shè)計(jì)了一種促銷(xiāo)活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”、“30元”的字樣.規(guī)定:顧客在本超市一次性購(gòu)物滿(mǎn)500元以上均可獲得兩次摸球的機(jī)會(huì)(摸出小球后放回).超市根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)的代金券.

1)顧客甲購(gòu)物1000元,則他最少可獲   元代金券,最多可獲   元代金券.

2)請(qǐng)用樹(shù)形圖或列表方法,求出顧客甲獲得不低于30元(含30元)代金券的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠C90°,AB5,AC3,DAB的中點(diǎn),E是直線BC上一點(diǎn),把BDE沿直線ED翻折后,點(diǎn)B落在點(diǎn)F處,當(dāng)FDBC時(shí),線段BE的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案