【題目】五一期間,小華和媽媽到某景區(qū)游玩,小明想利用所學(xué)的數(shù)學(xué)知識(shí),估測(cè)景區(qū)里的觀景塔的高度,他從點(diǎn)處的觀景塔出來(lái)走到點(diǎn).沿著斜坡點(diǎn)走了米到達(dá)點(diǎn),此時(shí)回望觀景塔,更顯氣勢(shì)宏偉.點(diǎn)觀察到觀景塔頂端的仰角為,再往前走到處,觀察到觀景塔頂端的仰角,測(cè)得之間的水平距離米,則觀景塔的高度約為( ) . ()

A.B.C.D.

【答案】C

【解析】

BFDEF,AHBFH,根據(jù)等腰直角三角形的性質(zhì)求出AH,根據(jù)正切的定義用EF表示出CF、BF,根據(jù)題意列式求出EF,結(jié)合圖形計(jì)算,得到答案.

解:作BFDEF, AHBFH,

∵∠EBF45°,

∴∠ABH45°,

AHBH8×4,

RtECF中,tanECF,

CFEF

RtEBF中,∠EBF45°,

BFEF

由題意得,EFEF10,

解得,EF55

DEEFDF55419,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程有兩個(gè)正整數(shù)根(m是正整數(shù)),且滿足,。

1)求的值; (2)求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9分)某批發(fā)商以每件50元的價(jià)格購(gòu)進(jìn)800T恤,第一個(gè)月以單價(jià)80元銷售,售出了200件;第二個(gè)月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,批發(fā)商為增加銷售量,決定降價(jià)銷售,根據(jù)市場(chǎng)調(diào)查,單價(jià)每降低1元,可多售出10件,但最低單價(jià)應(yīng)高于購(gòu)進(jìn)的價(jià)格;第二個(gè)月結(jié)束后,批發(fā)商將對(duì)剩余的T恤一次性清倉(cāng)銷售,清倉(cāng)是單價(jià)為40元,設(shè)第二個(gè)月單價(jià)降低元.

1)填表:(不需化簡(jiǎn))

2)如果批發(fā)商希望通過(guò)銷售這批T恤獲利9000元,那么第二個(gè)月的單價(jià)應(yīng)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊BC上,BE=EC,將DCE沿DE對(duì)折至DFE,延長(zhǎng)EF交邊AB于點(diǎn)G,連接DGBF,給出下列結(jié)論:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④SBEF=.其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=4BC=6,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)E是邊AB上的任意一點(diǎn)(點(diǎn)E不與點(diǎn)B重合),沿DE翻折△DBE,使點(diǎn)B落在點(diǎn)F處,連接AF,則當(dāng)線段AF的長(zhǎng)取最小值時(shí),tanFBD____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OAB中,∠ABO90°,點(diǎn)A位于第一象限,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Bx軸正半軸上,若雙曲線yx0)與△OAB的邊AO.AB分別交于點(diǎn)C.D,點(diǎn)CAO的中點(diǎn),連接OD.CD.若SOBD3,則SOCD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一張正方形紙片按如圖步驟,通過(guò)折疊得到圖④,再沿虛線剪去一個(gè)角,展開(kāi)鋪平后得到圖⑤,其中FMGN是折痕,若正方形EFGH與五邊形MCNGF面積相等,則的值是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圓中,弦與弦相交于點(diǎn),于點(diǎn),過(guò)點(diǎn)作圓的切線的延長(zhǎng)線于點(diǎn).

1)如圖①,若,求的大。

2)如圖②,連接,,若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣2x+4分別交x軸、y軸于點(diǎn)A、B,拋物線過(guò)A,B兩點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)PPCx軸于點(diǎn)C,交拋物線于點(diǎn)D

1)若拋物線的解析式為y=﹣2x2+2x+4,設(shè)其頂點(diǎn)為M,其對(duì)稱軸交AB于點(diǎn)N

求點(diǎn)M和點(diǎn)N的坐標(biāo);

在拋物線的對(duì)稱軸上找一點(diǎn)Q,使|AQBQ|的值最大,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);

是否存在點(diǎn)P,使四邊形MNPD為菱形?并說(shuō)明理由;

2)當(dāng)點(diǎn)P的橫坐標(biāo)為1時(shí),是否存在這樣的拋物線,使得以B、P、D為頂點(diǎn)的三角形與△AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案