分析 延長BE、AC交于點(diǎn)P,連接OB,過點(diǎn)C作CR⊥AB,在Rt△BOH中根據(jù)半徑及∠BOH求得BH、BC的長,證△ABE≌△APE得BE=PE、AB=AP,結(jié)合BH=CH可得CP=2HE=3,設(shè)AC=m,則AB=m+3,在Rt△ACR中表示出CR、AR的長,在Rt△BCR中根據(jù)勾股定理可求得m的值,即AC的長.
解答 解:如圖,延長BE、AC交于點(diǎn)P,連接OB,過點(diǎn)C作CR⊥AB于點(diǎn)R,
在Rt△BOH中,OB=OD+OH=$\frac{7\sqrt{3}}{3}$,
∴∠BOH=60°,
∴BH=OB•sin60°=$\frac{7}{2}$,
∵OH⊥BC,
∴BH=CH,
∴BC=2BH=7,
∵BE⊥AD,
∴∠AEB=∠AEP=90°,
在△ABE和△APE中,
$\left\{\begin{array}{l}{∠BAE=∠PAE}\\{AE=AE}\\{∠AEB=∠AEP}\end{array}\right.$,
∴△ABE≌△APE(ASA),
∴BE=PE,AB=AP,
∵BH=CH,
∴HE是△BCP的中位線,
∴CP=2HE=3,
設(shè)AC=m,則AB=AP=m+3,
在Rt△ACR中,∠RAC=60°,
∴AR=$\frac{1}{2}$m,CR=$\frac{\sqrt{3}}{2}$m,
∴BR=AB-AR=m+3-$\frac{1}{2}$m=$\frac{1}{2}$m+3,
在Rt△BCR中,BR2+CR2=BC2,即($\frac{1}{2}$m+3)2+($\frac{\sqrt{3}}{2}$m)2=72,
解得:m=5或m=-8(舍),
∴AC=5.
故答案是:5.
點(diǎn)評 此題考查了三角形外接圓與圓心、圓周角定理、垂徑定理、全等三角形的判定等知識.該題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x<3 | B. | 3<x<4 | C. | x<4 | D. | 無解 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com