如圖,⊙O中弦AB⊥AC,D,E分別是AB,AC的中點.若AB=AC,則四邊形OEAD是    形.
【答案】分析:利用垂徑定理可求得四邊形OEAD是矩形,再根據(jù)有一組鄰邊相等的矩形是正方形得到該四邊形是正方形.
解答:解:由垂徑定理知,∠OEA=∠ODA=∠A=90°
∴四邊形OEAD是矩形
∵AB=AC
∴兩弦的弦心距也相等,即OE=OD
∴矩形OEAD是正方形.
點評:本題考查學生對垂徑定理及正方形的判定的理解及運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O中弦AB、CD相交于點F,AB=10,AF=2.若CF:DF=1:4,則CF的長等于( 。
A、
2
B、2
C、3
D、2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O中弦AB,CD相交于點P,已知AP=3,BP=2,CP=1,則DP=( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O中弦AB、CD相交于點P,PC=PD,PA=3cm,PB=4cm.那么CD的長為( 。
A、4cm
B、2
3
cm
C、4
3
cm
D、2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O中弦AB等于半徑R,則這條弦所對的圓心角是
60°
60°
,圓周角是
30°或150°
30°或150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O中弦AB⊥AC,D,E分別是AB,AC的中點.
(1)若AB=AC,則四邊形OEAD是
正方
正方
形;
(2)若OD=3,半徑r=5,則AB=
8
8
cm,AC=
6
6
cm.

查看答案和解析>>

同步練習冊答案