【題目】如圖,∠B、∠C的平分線相交于F,過(guò)點(diǎn)F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論:①△BDF、△CEF都是等腰三角形; ②DE=BD+CE;③△ADE的周長(zhǎng)為AB+AC;④BD=CE.其中正確的是(
A.③④
B.①②
C.①②③
D.②③④

【答案】C
【解析】解:∵DE∥BC, ∴∠DFB=∠FBC,∠EFC=∠FCB,
∵△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)F,
∴∠DBF=∠FBC,∠ECF=∠FCB,
∴∠DBF=∠DFB,∠ECF=∠EFC,
∴DB=DF,EF=EC,
即△BDF和△CEF都是等腰三角形;
故①正確;
∴DE=DF+EF=BD+CE,
故②正確;
∴△ADE的周長(zhǎng)為:AD+DE+AE=AB+BD+CE+AE=AB+AC;
故③正確;
∵∠ABC不一定等于∠ACB,
∴∠FBC不一定等于∠FCB,
∴BF與CF不一定相等,
∴BD與CE不一定相等,故④錯(cuò)誤.
故選C.
【考點(diǎn)精析】利用平行線的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、F、B、C是半圓O上的四個(gè)點(diǎn),四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點(diǎn)E,過(guò)點(diǎn)C作OF的平行線交AB的延長(zhǎng)線于點(diǎn)D,延長(zhǎng)AF交直線CD于點(diǎn)H.

(1)求證:CD是半圓O的切線;

(2)若DH=,求EF和半徑OA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,以BC為直徑的圓交AC于點(diǎn)D,∠ABD=∠ACB.

(1)求證:AB是圓的切線;

(2)若點(diǎn)E是BC上一點(diǎn),已知BE=4,tan∠AEB=,AB:BC=2:3,求圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點(diǎn),直線MN經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)A作直線MN的垂線,垂足為點(diǎn)D,且∠BAC=∠CAD.

(1)求證:直線MN是⊙O的切線;

(2)若CD=3,∠CAD=30°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一條長(zhǎng)40cm的繩子圍成一個(gè)面積為64cm2的矩形.設(shè)矩形的一邊長(zhǎng)為xcm,則可列方程為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,以AB的中點(diǎn)D為圓心,作圓心角為90°的扇形DEF,點(diǎn)C恰在EF上,設(shè)∠BDF=α(0°<α<90°),當(dāng)α由小到大變化時(shí),圖中陰影部分的面積(

A.由小到大 B.由大到小 C不變 D.先由小到大,后由大到小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線(m>0)與x軸的交點(diǎn)為A,B

1)求拋物線的頂點(diǎn)坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).

當(dāng)m1時(shí),求線段AB上整點(diǎn)的個(gè)數(shù);

若拋物線在點(diǎn)A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個(gè)整點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若3×9m×27m=311 , 則m的值為(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,半徑OA⊥OB,過(guò)點(diǎn)OA的中點(diǎn)C作FD∥OB交⊙O于D、F兩點(diǎn),且CD=,以O(shè)為圓心,OC為半徑作,交OB于E點(diǎn).

(1)求⊙O的半徑OA的長(zhǎng);

(2)計(jì)算陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案