如圖,△ABC的外角平分線CP和內(nèi)角平分線BP相交于點P,若∠BPC=35°,則
∠CAP=


  1. A.
    45°
  2. B.
    50°
  3. C.
    55°
  4. D.
    65°
C
分析:根據(jù)外角與內(nèi)角性質(zhì)得出∠BAC的度數(shù),再利用角平分線的性質(zhì)以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案.
解答:解:延長BA,做PN⊥BD,PF⊥BA,PM⊥AC,
設∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=35°,
∴∠ABP=∠PBC=(x-35)°,
∴∠BAC=∠ACD-∠ABC=2x°-(x°-35°)-(x°-35°)=70°,
∴∠CAF=110°,
在Rt△PFA和Rt△PMA中,
PA=PA,PM=PF,
∴Rt△PFA≌Rt△PMA,
∴∠FAP=∠PAC=55°.
故選C.
點評:此題主要考查了角平分線的性質(zhì)以及三角形外角的性質(zhì)和直角三角全等的判定等知識,根據(jù)角平分線的性質(zhì)得出PM=PN=PF是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、已知如圖,△ABC的外角∠CBD和∠BCE的平分線相交于點F,求證:點F在∠DAE的平分線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC的外角∠CBD、∠BCE的平分線相交于點F,若∠A=68°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、如圖,△ABC的外角∠ACD的平分線CP與內(nèi)角∠ABC平分線BP交于點P,若∠BPC=40°,則∠CAP=
50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC的外角∠CBD和∠BCE的平分線相交于點F,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•沈陽模擬)如圖,△ABC的外角∠ACD的平分線CE與內(nèi)角∠ABC平分線BE交于點E,若∠BAC=70°,則∠CAE=
55°
55°

查看答案和解析>>

同步練習冊答案