如圖,長(zhǎng)方體的底面是邊長(zhǎng)為1cm 的正方形,高為3cm.如果從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞2圈到達(dá)點(diǎn)B,那么所用細(xì)線最短需要
73
73
cm.
分析:根據(jù)繞兩圈到B,則展開(kāi)后相當(dāng)于求出直角三角形ACB的斜邊長(zhǎng),并且AC=8cm,BC=3cm,根據(jù)勾股定理求出即可.
解答:解:如圖所示,
∵從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞2圈到達(dá)點(diǎn)B,
∴展開(kāi)后AC=1cm×8=8cm,BC=3cm,
由勾股定理得:AB=
AC2+BC2
=
73
cm.
故答案為:
73
點(diǎn)評(píng):本題考查了平面展開(kāi)-最短路線問(wèn)題和勾股定理的應(yīng)用,能正確畫(huà)出圖形是解此題的關(guān)鍵,用了數(shù)形結(jié)合思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,長(zhǎng)方體的底面是邊長(zhǎng)為1cm 的正方形,高為3cm.
(1)如果用一根細(xì)線從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞一圈到達(dá)點(diǎn)B,請(qǐng)利用側(cè)面展開(kāi)圖計(jì)算所用細(xì)線最短需要多少cm?
(2)如果從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞2圈到達(dá)點(diǎn)B,那么所用細(xì)線最短需要
 
cm.(直接填空)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,長(zhǎng)方體的底面是邊長(zhǎng)為1cm 的正方形,高為3cm.
(1)如果用一根細(xì)線從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞一圈到達(dá)點(diǎn)B,請(qǐng)利用側(cè)面展開(kāi)圖計(jì)算所用細(xì)線最短需要多少cm?
(2)如果從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞2圈到達(dá)點(diǎn)B,那么所用細(xì)線最短需要________cm.(直接填空)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年湖北省天門(mén)市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:填空題

如圖,長(zhǎng)方體的底面是邊長(zhǎng)為1cm 的正方形,高為3cm.如果從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞2圈到達(dá)點(diǎn)B,那么所用細(xì)線最短需要    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市拱墅區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,長(zhǎng)方體的底面是邊長(zhǎng)為1cm 的正方形,高為3cm.
(1)如果用一根細(xì)線從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞一圈到達(dá)點(diǎn)B,請(qǐng)利用側(cè)面展開(kāi)圖計(jì)算所用細(xì)線最短需要多少cm?
(2)如果從點(diǎn)A開(kāi)始經(jīng)過(guò)4個(gè)側(cè)面纏繞2圈到達(dá)點(diǎn)B,那么所用細(xì)線最短需要______

查看答案和解析>>

同步練習(xí)冊(cè)答案