【題目】某地進行中考體育測試,規(guī)定測試項目分為必選項目與自選項目,男生自選項目是50米跑(A)、立定跳遠(B)、引體向上(C)、1分鐘跳繩(D),每個男生要在四個項目抽選兩項進行測試.測試前,每個學生先抽一個,確定一個,再在所剩三個項目中再抽一個.張強同學的這四個項目中,他自認為50米跑更擅長.

(1)若張強先抽到立定跳遠,然后再從剩下的項目中隨機選擇一項參加測試,則他剛好選中50米跑的概率是_______.

(2)若張強連續(xù)隨機抽取兩項,求其中抽中50米跑的概率.

【答案】1;(2.

【解析】

1)根據(jù)概率公式計算即可;

2)先利用列表法得出所有等可能的結(jié)果,再找出其中抽中50米跑的結(jié)果,然后根據(jù)概率公式計算即可.

解:(1)若張強先抽到立定跳遠,則他再從剩下的項目中隨機選擇一項參加測試有3種結(jié)果,其中他剛好選中50米跑的只有1種結(jié)果,∴他剛好選中50米跑的概率為.

故答案為:;

2)所有可能的結(jié)果如下表所示:

根據(jù)表格可知,張強選擇的方案共有12種等可能的結(jié)果,其中抽中50米跑的有6種結(jié)果,

所以抽中50米跑的概率為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點A、B,與y軸交于點C,點A的坐標為(-4,0),P是拋物線上一點 (點P與點A、B、C不重合).

(1)b=  ,點B的坐標是  ;

(2)設直線PB直線AC交于點M,是否存在這樣的點P,使得PM:MB=1:2?若存在,求出點P的橫坐標;若不存在,請說明理由;

(3)連接AC、BC,判斷∠CAB和∠CBA的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:頂點、開口大小相同,開口方向相反的兩個二次函數(shù)互為“反簇二次函數(shù)”.

1)已知二次函數(shù)y=﹣(x﹣2)23,則它的“反簇二次函數(shù)”是__________________;

2)已知關于x的二次函數(shù)y1=2x22mxm+1y2=ax2+bxc,其中y1的圖像經(jīng)過點(1,1.若y1y2y1互為“反簇二次函數(shù)”.求函數(shù)y2的表達式,并直接寫出當0x3時,y2的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E為△ABC的內(nèi)心,過點EMNBCAB于點M,交AC于點N,若AB7,AC5BC6,則MN的長為(  )

A. 3.5B. 4C. 5D. 5.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形 ABCD 中,點 EF 分別在 BC AB 上,BE3AF2,BF4,將△ BEF 繞點 E 順時針旋轉(zhuǎn),得到△GEH,當點 H 落在 CD 邊上時,FH 兩點之間的距離為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學課上,老師要求學生探究如下問題:

(1)如圖1,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=PC=1,試求∠BPC的度數(shù).李華同學一時沒有思路,當他認真分析題目信息后,發(fā)現(xiàn)以PAPB、PC的長為邊構成的三角形是直角三角形,他突然有了正確的思路:如圖2,將△BPC繞點B逆時針旋轉(zhuǎn)60°,得到△BP′A,連接PP′,易得△P′PB是等邊三角形,△PP′A是直角三角形.則∠BPC=_______°.

(2)如圖3,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1,試求∠BPC的度數(shù).

(3)在圖3中,若在正方形ABCD內(nèi)有另一點Q,QA=a,QB=bQC=c(a>b,a>c),試猜想a,b,c滿足什么條件時,∠BQC的度數(shù)與第(2)問中∠BPC的度數(shù)相等,請直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,在RtABC中,∠C=90°,點O在邊BC上,以點O為圓心,OB為半徑的圓經(jīng)過點A,過點A作直線AD,使∠CAD=2B

1)判斷直線AD與⊙O的位置關系,并說明理由;

2)若OB=4,∠CAD=60°,請直接寫出圖中弦AB圍成的陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OAO的半徑,點E為圓內(nèi)一點,且OAOEABO的切線,EBO于點F,BQAF于點Q

(1)如圖1,求證:OEAB

(2)如圖2,若ABAO,求的值;

(3)如圖3,連接OF,∠EOF的平分線交射線AF于點P,若OA2,cosPAB,求OP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在8×5的正方形網(wǎng)格中,每個小正方形的邊長均為1,△ABC的三個頂點均在小正方形的頂點上.

1)在圖1中畫出△ABD(點D在小正方形的頂點上),使△ABD的周長等于△ABC的周長,且四邊形ACBD是中心對稱圖形;

2)在圖2中找一點E(點E在小正方形的頂點上),使tanAEB2AEEB),且四邊形ACEB的對邊不平行,并直接寫出圖2中四邊形ACEB的面積.

查看答案和解析>>

同步練習冊答案