【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+cx軸交于A(1,0),B(3,0),與y軸交于C(0,3),拋物線頂點(diǎn)為D點(diǎn).

(1)求此拋物線解析式;

(2)如圖1,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在對(duì)稱(chēng)軸右側(cè),若△ADP面積為3,求點(diǎn)P的坐標(biāo);

(3)(2)的條件下,PA交對(duì)稱(chēng)軸于點(diǎn)E,如圖2,過(guò)E點(diǎn)的任一條直線與拋物線交于M,N兩點(diǎn),直線MD交直線y=﹣3于點(diǎn)F,連結(jié)NF,求證:NF∥y軸.

【答案】(1)拋物線解析式為:y=x2﹣4x+3;(2)P(4,3);(3)證明見(jiàn)解析.

【解析】

(1)利用待定系數(shù)法確定函數(shù)關(guān)系式;

(2)利用待定系數(shù)法求得直線AD的解析式,根據(jù)函數(shù)圖象上點(diǎn)的坐標(biāo)特征可以設(shè)P(t,t2-4t+3),R(t,-t+1).如圖1,過(guò)點(diǎn)PPRyAD的延長(zhǎng)線于R,由此得到SADP=SAPR-SPDR=PR(t-1)-PR(t-2)=3,PR=6,所以利用關(guān)于t的方程求得點(diǎn)P的坐標(biāo);

(3)欲證明NFy軸,只需求得點(diǎn)N、F的橫坐標(biāo)相等即可.

(1)A(1,0),B(3,0),C(0,3)分別代入y=ax2+bx+c,得

解得,

所以,該拋物線解析式為:y=x2﹣4x+3;

(2)(1)知,該拋物線解析式為:y=x2﹣4x+3,

y=x2﹣4x+3=(x﹣2)2﹣1,

∴頂點(diǎn)D的坐標(biāo)是(2,﹣1).

如圖1,過(guò)點(diǎn)PPRyAD的延長(zhǎng)線于R,

A(1,0),D(2,﹣1)易得直線AD的解析式為:y=﹣x+1.

設(shè)P(t,t2﹣4t+3),R(t,﹣t+1).

PR=t2﹣3t+2.

∵△ADP面積為3,

SADP=SAPR﹣SPDRPR(t﹣1)﹣PR(t﹣2)=3,

PR=6,即t2﹣3t+2=6,

解得t1=4,t2=0(舍去).

此時(shí)t2﹣4t+3=42﹣4×4+3=3,

P(4,3);

(3)證明:∵P(4,3),A(1,0),

∴直線APy=x﹣1,

x=2代入,y=1,

E(2,1).

設(shè)直線MN的解析式為:y=kx﹣2k+1.

聯(lián)立方程組,得,

消去y,得x2﹣(4+k)x+2+2k=0,

解得x1,x2,

M(,),xN

∴直線MN的解析式為y=(x﹣2)﹣1.

y=﹣3,得xF

即:xN=xF,

NFy軸.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好地保護(hù)美麗如畫(huà)的邛海濕地,西昌市污水處理廠決定先購(gòu)買(mǎi)A,B兩種型號(hào)的污水處理設(shè)備共20臺(tái),對(duì)邛海濕地周邊污水進(jìn)行處理.每臺(tái)A型污水處理設(shè)備12萬(wàn)元,每臺(tái)B型污水處理設(shè)備10萬(wàn)元.已知1臺(tái)A型污水處理設(shè)備和2臺(tái)B型污水處理設(shè)備每周可以處理污水640 t,2臺(tái)A型污水處理設(shè)備和3臺(tái)B型污水處理設(shè)備每周可以處理污水1 080 t.

(1)A,B兩種型號(hào)的污水處理設(shè)備每周每臺(tái)分別可以處理污水多少?lài)?/span>.

(2)經(jīng)預(yù)算,市污水處理廠購(gòu)買(mǎi)設(shè)備的資金不超過(guò)230萬(wàn)元,每周處理污水的量不低于4 500 t,請(qǐng)你列舉出所有購(gòu)買(mǎi)方案,并指出哪種方案所需資金最少,最少是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子里有標(biāo)號(hào)分別為1,2,3,4的四個(gè)球,這些球除標(biāo)號(hào)數(shù)字外都相同.

(1)從盒中隨機(jī)摸出一個(gè)小球,求摸到標(biāo)號(hào)數(shù)字為奇數(shù)的球的概率;

(2)甲、乙兩人用這四個(gè)小球玩摸球游戲,規(guī)則是:甲從盒中隨機(jī)摸出一個(gè)小球,記下標(biāo)號(hào)數(shù)字后放回盒里,充分搖勻后,乙再?gòu)暮兄须S機(jī)摸出一個(gè)小球,并記下標(biāo)號(hào)數(shù)字.若兩次摸到球的標(biāo)號(hào)數(shù)字同為奇數(shù)或同為偶數(shù),則判甲贏;若兩次摸到球的標(biāo)號(hào)數(shù)字為一奇一偶,則判乙贏.請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法說(shuō)明這個(gè)游戲?qū)、乙兩人是否公平?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平行四邊形在平面直角坐標(biāo)系中,其中點(diǎn)的坐標(biāo)分別是,,點(diǎn)軸正半軸上,點(diǎn)的中點(diǎn),點(diǎn)軸正半軸上,

1)點(diǎn)的坐標(biāo)為______,點(diǎn)的坐標(biāo)為_______

2)求點(diǎn)的坐標(biāo).

3)如圖2,根據(jù)(2)中結(jié)論,將順時(shí)針旋轉(zhuǎn),求的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,分別為、上的點(diǎn),的平分線分別交于點(diǎn)、,.若,則的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC是等邊三角形,將一塊含有30°角的直角三角尺DEF按如圖所示放置,讓三角尺在BC所在的直線上向右平移.如圖,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)A恰好落在三角尺的斜邊DF上.

(1)利用圖證明:EF=2BC.

(2)在三角尺的平移過(guò)程中,在圖中線段AH=BE是否始終成立(假定AB,AC與三角尺的斜邊的交點(diǎn)分別為G,H)?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),線段AB的兩個(gè)端點(diǎn)的坐標(biāo)分別為A (0,2),B(﹣1,0),點(diǎn)C為線段AB的中點(diǎn),現(xiàn)將線段BA繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)、經(jīng)過(guò)點(diǎn)D.

(1)如圖1,若該拋物線經(jīng)過(guò)原點(diǎn)O,且a=﹣1.

求點(diǎn)D的坐標(biāo)及該拋物線的解析式;

連結(jié)CD,問(wèn):在拋物線上是否存在點(diǎn)P,使得∠POB與∠BCD互余?若存在,請(qǐng)求出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過(guò)點(diǎn)E(﹣1,1),點(diǎn)Q在拋物線上,且滿(mǎn)足∠QOB與∠BCD互余,若符合條件的Q點(diǎn)的個(gè)數(shù)是4個(gè),請(qǐng)直接寫(xiě)出a的取值范圍   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品共件,這兩種商品的進(jìn)價(jià)、售價(jià)如表所示:

進(jìn)價(jià)(元/件)

售價(jià)(元/件)

甲種商品

乙種商品

設(shè)購(gòu)進(jìn)甲種商品,且為整數(shù))件,售完此兩種商品總利潤(rùn)為元.

1)該商場(chǎng)計(jì)劃最多投入元用于購(gòu)進(jìn)這兩種商品共件,求至少購(gòu)進(jìn)甲種商品多少件?

2)求的函數(shù)關(guān)系式;

3)若售完這些商品,商場(chǎng)可獲得的最大利潤(rùn)是__________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2+4x-

(1)用配方法把該函數(shù)解析式化為y=a(x﹣h)2+k的形式,并指出函數(shù)圖象的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo);

(2)求函數(shù)圖象與x軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案