【題目】已知ABC是等邊三角形,將一塊含有30°角的直角三角尺DEF按如圖所示放置,讓三角尺在BC所在的直線上向右平移.如圖,當(dāng)點E與點B重合時,點A恰好落在三角尺的斜邊DF上.

(1)利用圖證明:EF=2BC.

(2)在三角尺的平移過程中,在圖中線段AH=BE是否始終成立(假定AB,AC與三角尺的斜邊的交點分別為G,H)?如果成立,請證明;如果不成立,請說明理由.

【答案】(1)詳見解析;(2)成立,證明見解析.

【解析】

1)根據(jù)等邊三角形的性質(zhì),得∠ACB=60°,AC=BC.結(jié)合三角形外角的性質(zhì),得∠CAF=30°,則CF=AC,從而證明結(jié)論;

2)根據(jù)(1)中的證明方法,得到CH=CF.根據(jù)(1)中的結(jié)論,知BE+CF=AC,從而證明結(jié)論.

1)∵ABC是等邊三角形,∴∠ACB=60°,AC=BC

∵∠F=30°,∴∠CAF=60°30°=30°,∴∠CAF=F,∴CF=AC,∴CF=AC=BC,∴EF=2BC

2)成立.證明如下:

ABC是等邊三角形,∴∠ACB=60°,AC=BC

∵∠F=30°,∴∠CHF=60°30°=30°,∴∠CHF=F,∴CH=CF

EF=2BC,∴BECF=BC

又∵AHCH=AC,AC=BC,∴AH=BE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,命題:①若∠B=∠C-∠A,ABC是直角三角形.②若a2(bc)(bc),ABC是直角三角形.③若∠A∶∠B∶∠C345,則ABC是直角三角形.④若abc543.則ABC是直角三角形. 其中假命題個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M(4,0),以點M為圓心、2為半徑的圓與x軸交于點A、B.已知拋物線 過點A和B,與y軸交于點C.

(1)求點C的坐標,并畫出拋物線的大致圖象.

(2)點Q(8,m)在拋物線上,點P為此拋物線對稱軸上一個動點,求PQ+PB的最小值.

(3)CE是過點C的⊙M的切線,點E是切點,求OE所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的兩條角平分線BD、CE交于O,且A=60°,則下列結(jié)論中不正確的是( )

A.BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=ax2+bx+cx軸交于A(1,0),B(3,0),與y軸交于C(0,3),拋物線頂點為D點.

(1)求此拋物線解析式;

(2)如圖1,點P為拋物線上的一個動點,且在對稱軸右側(cè),若△ADP面積為3,求點P的坐標;

(3)(2)的條件下,PA交對稱軸于點E,如圖2,過E點的任一條直線與拋物線交于M,N兩點,直線MD交直線y=﹣3于點F,連結(jié)NF,求證:NF∥y軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,ABACAB的垂直平分線交線段ACD,若△ABC和△DBC的周長分別是60 cm38 cm,則△ABC的腰長和底邊BC的長分別是( )

A. 22cm16cmB. 16cm22cm

C. 20cm16cmD. 24cm12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們約定:對角線互相垂直的凸四邊形叫做“正垂形”.

(1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“正垂形”的有   ;

②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形   “正垂形”.(填“是”或“不是”)

(2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時針方向排列的四個動點,AC與BD交于點E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,當(dāng)≤OE≤時,求AC2+BD2的取值范圍;

(3)如圖2,在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a,b,c為常數(shù),a>0,c<0)與x軸交于A,C兩點(點A在點C的左側(cè)),B是拋物線與y軸的交點,點D的坐標為(0,﹣ac),記“正垂形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4試直接寫出滿足下列三個條件的拋物線的解析式;

; ②; ③“正垂形”ABCD的周長為12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,,,點從點出發(fā),以每秒單位的速度向點運動,點從點同時出發(fā),以每秒單位的速度向點運動,其中一個動點到達終點時,另一個動點也隨之停止運動,設(shè)運動時間為秒.

1)當(dāng)時,若以點,和點,,中的兩個點為頂點的四邊形為平行四邊形,且線段為平行四邊形的一邊,求的值.

2)若以點,和點,,,中的兩個點為頂點的四邊形為菱形,且線段為菱形的一條對角線,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

同步練習(xí)冊答案