已知,正方形ABCD中,∠MAN="45°," ∠MAN繞點(diǎn)A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點(diǎn)M、N,AH⊥MN于點(diǎn)H.
【小題1】如圖①,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時,請你直接寫出AH與AB的數(shù)
量關(guān)系: ;
【小題2】如圖②,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時,(1)中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請寫出理由.如果成立請證明;
【小題3】如圖③,已知∠MAN=45°,AH⊥MN于點(diǎn)H,且MH=2,NH=3,求AH的長.
(可利用(2)得到的結(jié)論)
【小題1】如圖①AH=AB
【小題2】數(shù)量關(guān)系成立.如圖②,延長CB至E,使BE=DN
∵ABCD是正方形
∴AB=AD,∠D=∠ABE=90°
∴Rt△AEB≌Rt△AND…
∴AE=AN,∠EAB=∠NAD
∴∠EAM=∠NAM=45°
∵AM="AM"
∴△AEM≌△ANM
∵AB、AH是△AEM和△ANM對應(yīng)邊上的高,
∴AB=AH
【小題3】如圖③分別沿AM、AN翻折△AMH和△ANH,
得到△ABM和△AND
∴BM=2,DN=3,∠B=∠D=∠BAD=90°
分別延長BM和DN交于點(diǎn)C,得正方形ABCE.
由(2)可知,AH="AB=BC=CD=AD. "
設(shè)AH=x,則MC=, NC=
在Rt⊿MCN中,由勾股定理,得
∴
解得.(不符合題意,舍去)
∴AH=6
.
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
A、 | B、 | C、 | D、 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
6 |
3 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com