(2013•濟寧)如圖,在直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(1,4)和(3,0),點C是y軸上的一個動點,且A、B、C三點不在同一條直線上,當(dāng)△ABC的周長最小時,點C的坐標(biāo)是( 。
分析:根據(jù)軸對稱作最短路線得出AE=B′E,進而得出B′O=C′O,即可得出△ABC的周長最小時C點坐標(biāo).
解答:解:作B點關(guān)于y軸對稱點B′點,連接AB′,交y軸于點C′,
此時△ABC的周長最小,
∵點A、B的坐標(biāo)分別為(1,4)和(3,0),
∴B′點坐標(biāo)為:(-3,0),AE=4,
則B′E=4,即B′E=AE,
∵C′O∥AE,
∴B′O=C′O=3,
∴點C′的坐標(biāo)是(0,3),此時△ABC的周長最。
故選:D.
點評:此題主要考查了利用軸對稱求最短路線以及平行線的性質(zhì),根據(jù)已知得出C點位置是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟寧)如圖,放映幻燈時,通過光源,把幻燈片上的圖形放大到屏幕上,若光源到幻燈片的距離為20cm,到屏幕的距離為60cm,且幻燈片中的圖形的高度為6cm,則屏幕上圖形的高度為
18
18
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟寧)如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟寧)如圖1,在正方形ABCD中,E、F分別是邊AD、DC上的點,且AF⊥BE.
(1)求證:AF=BE;
(2)如圖2,在正方形ABCD中,M、N、P、Q分別是邊AB、BC、CD、DA上的點,且MP⊥NQ.MP與NQ是否相等?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟寧)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,P是反比例函數(shù)y=
12
x
(x>0)圖象上任意一點,以P為圓心,PO為半徑的圓與坐標(biāo)軸分別交于點A、B.
(1)求證:線段AB為⊙P的直徑;
(2)求△AOB的面積;
(3)如圖2,Q是反比例函數(shù)y=
12
x
(x>0)圖象上異于點P的另一點,以Q為圓心,QO為半徑畫圓與坐標(biāo)軸分別交于點C、D.
求證:DO•OC=BO•OA.

查看答案和解析>>

同步練習(xí)冊答案