(2013•濟寧)如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為( 。
分析:連接OD,由DF為圓的切線,利用切線的性質(zhì)得到OD垂直于DF,根據(jù)三角形ABC為等邊三角形,利用等邊三角形的性質(zhì)得到三條邊相等,三內(nèi)角相等,都為60°,由OD=OC,得到三角形OCD為等邊三角形,進而得到OD平行與AB,由O為BC的中點,得到D為AC的中點,在直角三角形ADF中,利用30°所對的直角邊等于斜邊的一半求出AD的長,進而求出AC的長,即為AB的長,由AB-AF求出FB的長,在直角三角形FBG中,利用30°所對的直角邊等于斜邊的一半求出BG的長,再利用勾股定理即可求出FG的長.
解答:解:連接OD,
∵DF為圓O的切線,
∴OD⊥DF,
∵△ABC為等邊三角形,
∴AB=BC=AC,∠A=∠B=∠C=60°,
∵OD=OC,
∴△OCD為等邊三角形,
∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,
∴OD∥AB,
又O為BC的中點,
∴D為AC的中點,即OD為△ABC的中位線,
∴OD∥AB,
∴DF⊥AB,
在Rt△AFD中,∠ADF=30°,AF=2,
∴AD=4,即AC=8,
∴FB=AB-AF=8-2=6,
在Rt△BFG中,∠BFG=30°,
∴BG=3,
則根據(jù)勾股定理得:FG=3
3

故選B
點評:此題考查了切線的性質(zhì),等邊三角形的性質(zhì),含30°直角三角形的性質(zhì),勾股定理,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟寧)如圖,放映幻燈時,通過光源,把幻燈片上的圖形放大到屏幕上,若光源到幻燈片的距離為20cm,到屏幕的距離為60cm,且幻燈片中的圖形的高度為6cm,則屏幕上圖形的高度為
18
18
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟寧)如圖,在直角坐標系中,點A、B的坐標分別為(1,4)和(3,0),點C是y軸上的一個動點,且A、B、C三點不在同一條直線上,當(dāng)△ABC的周長最小時,點C的坐標是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟寧)如圖1,在正方形ABCD中,E、F分別是邊AD、DC上的點,且AF⊥BE.
(1)求證:AF=BE;
(2)如圖2,在正方形ABCD中,M、N、P、Q分別是邊AB、BC、CD、DA上的點,且MP⊥NQ.MP與NQ是否相等?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟寧)如圖1,在平面直角坐標系中,O為坐標原點,P是反比例函數(shù)y=
12
x
(x>0)圖象上任意一點,以P為圓心,PO為半徑的圓與坐標軸分別交于點A、B.
(1)求證:線段AB為⊙P的直徑;
(2)求△AOB的面積;
(3)如圖2,Q是反比例函數(shù)y=
12
x
(x>0)圖象上異于點P的另一點,以Q為圓心,QO為半徑畫圓與坐標軸分別交于點C、D.
求證:DO•OC=BO•OA.

查看答案和解析>>

同步練習(xí)冊答案