【題目】如圖,在13×7的網(wǎng)格中,每個(gè)小正方形邊長(zhǎng)都是1,其頂點(diǎn)叫做格點(diǎn),如圖A、B、DE、M、P均為格點(diǎn).

1)請(qǐng)?jiān)诰W(wǎng)格中畫ABCD,要求C點(diǎn)在格點(diǎn)上.

2)在(1)中ABCD右側(cè)畫格點(diǎn)△EFG,并使EF=5,FG=3,EG=

3)以MP為對(duì)角線畫矩形MNPQMN、PQ按逆時(shí)針?lè)较蚺帕校,使矩?/span>MNPQ的面積為10

4)在直線AE上有一點(diǎn)W,使WBWM的值最小,則這個(gè)最小值為

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3)見(jiàn)解析;(4.

【解析】

1)根據(jù)A,B,D的位置和平行四邊形性質(zhì)找到點(diǎn)C作出即可;

2)依據(jù)EF=5FG=3,EG=,確定FG的位置,作圖即可;

3)根據(jù)MP為對(duì)角線及矩形MNPQ的面積為10,從而確定N,Q的位置,作圖即可;

4)過(guò)點(diǎn)M作關(guān)于直線AE的對(duì)稱點(diǎn),連接AE直線交于點(diǎn)W,則WBWM的最小值及即的長(zhǎng)度,求出即可.

1)根據(jù)A,BD的位置和平行四邊形兩組對(duì)邊分別平行,從而確定C點(diǎn)位置,作出,如圖所示;

2)使EF=5,FG=3,EG=,則,,

從而確定F,G的位置,△EFG如圖所示;

3,

MP為對(duì)角線,且使矩形MNPQ的面積為10,

從而確定N,Q的位置,

矩形MNPQ如圖所示;

4)過(guò)點(diǎn)M作關(guān)于直線AE的對(duì)稱點(diǎn),連接AE直線交于點(diǎn)W,

WBWM的最小值即的長(zhǎng)度,

,

WBWM的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2+2x+m.

(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;

(2)如圖,二次函數(shù)的圖象過(guò)點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca0圖象的頂點(diǎn)為D 其圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣13.與y軸負(fù)半軸交于點(diǎn)C,當(dāng)a=時(shí),ABD_______三角形;要使ACB為等腰三角形,則a值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來(lái)越美麗,小明家附近廣場(chǎng)中央新修了一個(gè)圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達(dá)到最高,水柱落地處離池中心米.

(1)請(qǐng)你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并求出水柱拋物線的函數(shù)解析式;

(2)求出水柱的最大高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知長(zhǎng)方形,點(diǎn),.

1)如圖,有一動(dòng)點(diǎn)在第二象限的角平分線上,若,求的度數(shù);

2)若把長(zhǎng)方形向上平移,得到長(zhǎng)方形.

①在運(yùn)動(dòng)過(guò)程中,求的面積與的面積之間的數(shù)量關(guān)系;

②若,求的面積與的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中學(xué)初三(1)班共有40名同學(xué),在一次30秒跳繩測(cè)試中他們的成績(jī)統(tǒng)計(jì)如下表:

跳繩數(shù)/個(gè)

81

85

90

93

95

98

100

人 數(shù)

1

2

8

11

5

將這些數(shù)據(jù)按組距5(個(gè))分組,繪制成如圖的頻數(shù)分布直方圖(不完整).

(1)將表中空缺的數(shù)據(jù)填寫完整,并補(bǔ)全頻數(shù)分布直方圖;

(2)這個(gè)班同學(xué)這次跳繩成績(jī)的眾數(shù)是 個(gè),中位數(shù)是 個(gè);

(3)若跳滿90個(gè)可得滿分,學(xué)校初三年級(jí)共有720人,試估計(jì)該中學(xué)初三年級(jí)還有多少人跳繩不能得滿分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年是中國(guó)建國(guó)70周年,作為新時(shí)期的青少年,我們應(yīng)該肩負(fù)起實(shí)現(xiàn)粗國(guó)偉大復(fù)興的責(zé)任,為了培養(yǎng)學(xué)生的愛(ài)國(guó)主義情懷,我校學(xué)生和老師在5月下旬集體乘車去抗日戰(zhàn)爭(zhēng)紀(jì)念館研學(xué),已知學(xué)生的人數(shù)是老師人數(shù)的12倍多20人,學(xué)生和老師總?cè)藬?shù)有540人.

1)請(qǐng)求出去抗日戰(zhàn)爭(zhēng)紀(jì)念館研學(xué)的學(xué)生和老師的人數(shù)各是多少?

2)如果學(xué)校準(zhǔn)備租賃A型車和B型車共14輛(其中B型車最多7輛),已知A型車每車最多可以載35人,日租金為2000元,B型車每車最多可以載45人,日租金為3000元,請(qǐng)求出最經(jīng)濟(jì)的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)數(shù)軸和絕對(duì)值的知識(shí)回答下列問(wèn)題

(1)一般地,數(shù)軸上表示數(shù)m和數(shù)n兩點(diǎn)之間的距離我們可用│m-n│表示。

例如,數(shù)軸上41兩點(diǎn)之間的距離是________.數(shù)軸上-32兩點(diǎn)之間的距離是________.

(2) 數(shù)軸上表示數(shù)a的點(diǎn)位于-42之間,則│a+4│+│a-2│的值為_____________.

(3) 當(dāng)a為何值時(shí),│a+5│+│a-1│+│a-4│有最小值?最小值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解題:

按照一定順序排列著的一列數(shù)稱為數(shù)列,排在第一位的數(shù)稱為第1項(xiàng),記為,依次類推,排在第位的數(shù)稱為第項(xiàng),記為

一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母表示().如:數(shù)列1,3,9,27,…為等比數(shù)列,其中,公比為

則:(1)等比數(shù)列3,6,12,…的公比_____________,第4項(xiàng)是________________

2如果一個(gè)數(shù)列 , ,…是等比數(shù)列,且公比為,那么根據(jù)定義可得到:

, , ……

, ,

由此可得:an=____________________(用a1q的代數(shù)式表示)

(3)若一等比數(shù)列的公比q=2,第2項(xiàng)是10,請(qǐng)求它的第1項(xiàng)與第4項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案