【題目】如圖,△ABC中,∠ABC=90°,F(xiàn)是AC的中點(diǎn),過AC上一點(diǎn)D作DE//AB,交BF的延長(zhǎng)線于點(diǎn)E,AG⊥BE,垂足是G,連接BD、AE.

(1)求證:△ABC∽△BGA;
(2)若AF=5,AB=8,求FG的長(zhǎng);
(3)當(dāng)AB=BC,∠DBC=30°時(shí),求 的值.

【答案】
(1)

證明:∵∠ABC=90°,F(xiàn)是AC的中點(diǎn),

∴BF= AC=AF,

∴∠FAB=∠FBA,

∵AG⊥BE,

∴∠AGB=90°,

∴∠ABC=∠AGB,

∴△ABC∽△BGA;


(2)

∵AF=5,

∴AC=2AF=10,BF=5,

∵△ABC∽△BGA,

,

∴BG= = = ,

∴FG=BG﹣BF= ﹣5=


(3)

延長(zhǎng)ED交BC于H,如圖所示:

則DH⊥BC,

∴∠DHC=90°,

∵AB=AC,F(xiàn)為AC的中點(diǎn),

∴∠C=45°,∠CBF=45°,

∴△DHC、△BEH是等腰直角三角形,

∴DH=HC,EH=BH,

設(shè)DH=HC=a,

∵∠DBC=30°,

∴BD=2a,BH= a,

∴EH= a,

∴DE=( ﹣1)a,

=


【解析】(1)由直角三角形斜邊上的中線性質(zhì)得出BF=AF,得出∠FAB=∠FBA,再由∠ABC=∠AGB=90°,即可證出△ABC∽△BGA;(2)先求出AC、BF,再由三角形相似得出比例式 ,求出BG,即可得出FG;(3)延長(zhǎng)ED交BC于H,則DH⊥BC,先證出△DHC、△BEH是等腰直角三角形,得出DH=HC,EH=BH,設(shè)DH=HC=a,求出BD=2a,BH= a,得出EH、DE,即可求出 的值.
【考點(diǎn)精析】利用相似三角形的應(yīng)用對(duì)題目進(jìn)行判斷即可得到答案,需要熟知測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在數(shù)軸上A點(diǎn)表示數(shù),B點(diǎn)表示數(shù),且、滿足

1)點(diǎn)A表示的數(shù)為_______;點(diǎn)B表示的數(shù)為__________;

2)若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,請(qǐng)?jiān)跀?shù)軸上找一點(diǎn)C,使AC3BC,則C點(diǎn)表示的數(shù)__________;

3)若在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),請(qǐng)分別表示出甲、乙兩小球到原點(diǎn)的距離(用含t的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)公民的節(jié)約意識(shí),我市出臺(tái)階梯電價(jià)計(jì)算方案:居民生活用電將月用電量分為三檔,第一檔為月用電量200度(含)以內(nèi),第二檔為月用電量200~320度(含),第三檔為月用電量320度以上.這三個(gè)檔次的電價(jià)分別為:第一檔0.52/度,第二檔0.57/度,第三檔0.82/度.

(1)若某戶居民10月份電費(fèi)78元,則該戶居民10月份用電________度;

(2)若該戶居民2月份用電340度,則應(yīng)繳電費(fèi)________元;

(3)用x(度)來(lái)表示月用電量,請(qǐng)根據(jù)x的不同取值范圍,用含x的代數(shù)式表示出月用電費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,AD=12,過點(diǎn)A、D兩點(diǎn)的⊙O與BC邊相切于點(diǎn)E,則⊙O的半徑為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形AOCB的邊長(zhǎng)為4,反比例函數(shù)y= (k≠0,且k為常數(shù))的圖象過點(diǎn)E,且S△AOE=3S△OBE
(1)求k的值;
(2)反比例函數(shù)圖象與線段BC交于點(diǎn)D,直線y= x+b過點(diǎn)D與線段AB交于點(diǎn)F,延長(zhǎng)OF交反比例函數(shù)y= (x<0)的圖象于點(diǎn)N,求N點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)觀察思考:如圖,線段AB上有兩個(gè)點(diǎn)C、D,請(qǐng)分別寫出以點(diǎn)A、B、C、D為端點(diǎn)的線段,并計(jì)算圖中共有多少條線段;

(2)模型構(gòu)建:如果線段上有m個(gè)點(diǎn)(包括線段的兩個(gè)端點(diǎn)),則該線段上共有多少條線段?請(qǐng)說明你結(jié)論的正確性;

(3)拓展應(yīng)用:某班45名同學(xué)在畢業(yè)后的一次聚會(huì)中,若每?jī)扇宋?/span>1次手問好,那么共握多少次手?

請(qǐng)將這個(gè)問題轉(zhuǎn)化為上述模型,并直接應(yīng)用上述模型的結(jié)論解決問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上有三個(gè)點(diǎn)A,B,C,表示的數(shù)分別是﹣4,﹣2,3.

(1)若使C、B兩點(diǎn)的距離是A、B兩點(diǎn)的距離的2倍,則需將點(diǎn)C向左移動(dòng)   個(gè)單位;

(2)點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒a個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒:

點(diǎn)A、B、C表示的數(shù)分別是   、      。ㄓ煤琣、t的代數(shù)式表示);

若點(diǎn)B與點(diǎn)C之間的距離表示為d1,點(diǎn)A與點(diǎn)B之間的距離表示為d2,當(dāng)a為何值時(shí),5d1﹣3d2的值不會(huì)隨著時(shí)間t的變化而改變,并求此時(shí)5d1﹣3d2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】取一張矩形的紙片進(jìn)行折疊,具體操作過程如下: 第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖(1);
第二步:再把B點(diǎn)疊在折痕線MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B′,得Rt△AB′E,如圖(2);
第三步:沿EB′線折疊得折痕EF,如圖(3).
若AB= ,則EF的值是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,第一個(gè)正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)D的坐標(biāo)為(0,4),延長(zhǎng)CBx軸于點(diǎn)A1,作第二個(gè)正方形A1B1C1C;延長(zhǎng)C1B1x軸于點(diǎn)A2,作第三個(gè)正方形A2B2C2C1按這樣的規(guī)律進(jìn)行下去,第2018個(gè)正方形的面積為( 。

A. 20×(2017 B. 20×(2018 C. 20×(4036 D. 20×(4034

查看答案和解析>>

同步練習(xí)冊(cè)答案