如圖:已知拋物線y=
1
4
x2+
3
2
x-4與x軸交于A,B兩點,與y軸交于點C,O為坐標(biāo)原點.
(1)求A,B,C三點的坐標(biāo);
(2)已知矩形DEFG的一條邊DE在AB上,頂點F,G分別在線段BC,AC上,設(shè)OD=m,矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系式,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S取最大值時,連接對角線DF并延長至點M,使FM=
2
5
DF.試探究此時點M是否在拋物線上,請說明理由.
(1)A(2,0),B(-8,0),C(0,-4).(3分)

(2)由△ADG△AOC,可得
AD
AO
=
DG
OC
,
∴DG=2(2-m),(4分)
同理可得△CFG△CBA,
∴DE=5m,(5分)
∴S=DG×DE=2(2-m)•5m=20m-10m2
∴S與m的函數(shù)關(guān)系式為S=-10m2+20m,且0<m<2.(6分)

(3)由S=-10m2+20m可知m=1時,S有最大值10,此時D(1,0),DE=5,EF=2.(7分)
過點M作MN⊥AB,垂足為N,則有MNFE,
DE
DN
=
EF
MN
=
DF
DM
,
又有
DF
DM
=
5
7
,
得DN=7,MN=
14
5

∴N(-6,0),M(-6,-
14
5
)
,(8分)
在二次函數(shù)y=
1
4
x2+
3
2
x-4中,當(dāng)x=-6時,y=-4≠-
14
5

∴點M不在拋物線上.(9分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(五005•棗莊)已知拋物線y=(1-0)x+8x+b的圖象的的部分八圖所示,拋物的頂點在第的象限,且經(jīng)過點0(0,-7)和點B.
(1)求0的取值范圍;
(五)若O0=五OB,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義一種變換:平移拋物線F1得到拋物線F2,使F2經(jīng)過F1的頂點A.設(shè)F2的對稱軸分別交F1,F(xiàn)2于點D,B,點C是點A關(guān)于直線BD的對稱點.

(1)如圖1,若F1:y=x2,經(jīng)過變換后,得到F2:y=x2+bx,點C的坐標(biāo)為(2,0),則:
①b的值等于______;
②四邊形ABCD為( 。
A、平行四邊形;B、矩形;C、菱形;D、正方形.
(2)如圖2,若F1:y=ax2+c,經(jīng)過變換后,點B的坐標(biāo)為(2,c-1),求△ABD的面積;
(3)如圖3,若F1:y=
1
3
x2-
2
3
x+
7
3
,經(jīng)過變換后,AC=2
3
,點P是直線AC上的動點,求點P到點D的距離和到直線AD的距離之和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,O為原點,拋物線y=x2+bx+3與x軸的負半軸交于點A,與y軸的正半軸交于點B,tan∠ABO=
1
3
,頂點為P.
(1)求拋物線的解析式;
(2)若拋物線向上或向下平移|k|個單位長度后經(jīng)過點C(-5,6),試求k的值及平移后拋物線的最小值;
(3)設(shè)平移后的拋物線與y軸相交于D,頂點為Q,點M是平移的拋物線上的一個動點.請?zhí)骄浚寒?dāng)點M在何位置時,△MBD的面積是△MPQ面積的2倍求出此時點M的坐標(biāo).友情提示:拋物線y=ax2+bx+c(a≠0)的對稱軸是x=-
b
2a
,頂點坐標(biāo)是(-
b
2a
4ac-b2
4a
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在平面直角坐標(biāo)系中,半徑為2
2
的⊙O′與y軸交于A、B兩點,與直線OC相切于點C,∠BOC=45°,BC⊥OC,垂足為C.
(1)判斷△ABC的形狀;
(2)在
BC
上取一點D,連接DA、DB、DC,DA交BC于點E.求證:BD•CD=AD•ED;
(3)延長BC交x軸于點G,求經(jīng)過O、C、G三點的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2-2x+a與直線y=x+1有兩個公共點A(x1,y1),B(x2,y2),且x2>x1≥0.
(1)求拋物線的對稱軸,并在所給坐標(biāo)系中畫出對稱軸和直線y=x+1;
(2)試求a的取值范圍;
(3)若AE⊥x,E為垂足,BF⊥x軸,F(xiàn)為垂足,試求S梯形ABFE的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),矩形ABCD的一邊BC在直角坐標(biāo)系中x軸上,折疊邊AD,使點D落在x軸上點F處,折痕為AE,已知AB=8,AD=10,并設(shè)點B坐標(biāo)為(m,0),其中m>0.
(1)求點E、F的坐標(biāo)(用含m的式子表示);
(2)連接OA,若△OAF是等腰三角形,求m的值;
(3)如圖(2),設(shè)拋物線y=a(x-m-6)2+h經(jīng)過A、E兩點,其頂點為M,連接AM,若∠OAM=90°,求a、h、m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知正方形ABCD的邊長是1,E為CD邊的中點,P為正方形ABCD邊上的一個動點,動點P從點A出發(fā),沿A→B→C→E運動,到達E點.若點P經(jīng)過的路程為自變量x,△APE的面積為函數(shù)y,則當(dāng)y=
1
3
時,x的值等于______,______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A和B為拋物線y=-3x2-2x+k與x軸的兩個相異交點,M為拋物線的頂點,若△ABM為Rt△,求k的值.

查看答案和解析>>

同步練習(xí)冊答案