【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BCE、F兩點(diǎn),連接EFOB于點(diǎn)G,則下列結(jié)論中正確的是________

1EF=OE;(2S四邊形OEBFS正方形ABCD=14;(3BE+BF= OA;(4在旋轉(zhuǎn)過(guò)程中,當(dāng)BEFCOF的面積之和最大時(shí),AE=

【答案】(1)(2)(3)

【解析】試題解析:(1∵四邊形ABCD是正方形,

OB=OC,OBE=OCF=45°BOC=90°,

∴∠BOF+COF=90°,

∵∠EOF=90°

∴∠BOF+COE=90°,

∴∠BOE=COF

BOECOF中,

∴△BOE≌△COFASA),

OE=OF,BE=CF,

EF=OE;故正確;

2S四邊形OEBF=SBOE+SBOE=SBOE+SCOF=SBOC=S正方形ABCD,

S四邊形OEBFS正方形ABCD=14;故正確;

3BE+BF=BF+CF=BC=OA;故正確;

4)過(guò)點(diǎn)OOHBC

BC=1,

OH=BC=

設(shè)AE=x,則BE=CF=1-x,BF=x,

SBEF+SCOF=BEBF+CFOH=x1-x+1-x×=-x-2+,

a=-0

∴當(dāng)x=時(shí),SBEF+SCOF最大;

即在旋轉(zhuǎn)過(guò)程中,當(dāng)BEFCOF的面積之和最大時(shí),AE=;故錯(cuò)誤;

故答案為(1)(2)(3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了豐富學(xué)生的課余生活,準(zhǔn)備從體育用品商店一次性購(gòu)買若干個(gè)排球和籃球,若購(gòu)買2個(gè)排球和1個(gè)籃球共需190元.購(gòu)買3個(gè)排球和2個(gè)籃球共需330元.

1)購(gòu)買一個(gè)排球、一個(gè)籃球各需多少元?

2)根據(jù)該校的實(shí)際情況,需從體育用品商店一次性購(gòu)買排球和籃球共100個(gè),要求購(gòu)買排球和籃球的總費(fèi)用不超過(guò)6500元,這所中學(xué)最多可以購(gòu)買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)立德樹人根本任務(wù),培養(yǎng)德智體美勞全面發(fā)展的社會(huì)主義接班人,育才學(xué)校在設(shè)立學(xué)生獎(jiǎng)學(xué)金時(shí)規(guī)定:每學(xué)期對(duì)學(xué)生的德智體美勞五個(gè)方面進(jìn)行三次綜合素質(zhì)評(píng)價(jià),分別是:假期綜合素質(zhì)評(píng)價(jià)、期中綜合素質(zhì)評(píng)價(jià)、期末綜合素質(zhì)評(píng)價(jià),八年級(jí)(1)班的小明和八年級(jí)(2)班的小亮兩位同學(xué)同時(shí)進(jìn)入一等獎(jiǎng)學(xué)金測(cè)評(píng),他們的三次綜合素質(zhì)評(píng)價(jià)成績(jī)?nèi)缦卤恚?/span>

假期綜合素質(zhì)評(píng)價(jià)成績(jī)

期中綜合素質(zhì)評(píng)價(jià)成績(jī)

期末綜合素質(zhì)評(píng)價(jià)成績(jī)

小明

96

91

92

小亮

95

93

91

1)如果從三次綜合素質(zhì)評(píng)價(jià)成績(jī)穩(wěn)定性的角度來(lái)看,誰(shuí)可以得一等獎(jiǎng)學(xué)金?請(qǐng)你通過(guò)計(jì)算回答;

2)如果假期綜合素質(zhì)評(píng)價(jià)成績(jī)、期中綜合素質(zhì)評(píng)價(jià)成績(jī)、期末綜合素質(zhì)評(píng)價(jià)成績(jī)按的比例計(jì)入最終成績(jī),誰(shuí)可以得一等獎(jiǎng)學(xué)金?請(qǐng)你通過(guò)計(jì)算回答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABCD相交于點(diǎn)O,若BE平分∠ABDCDF,CE平分∠ACDABG,∠A=45°,∠BEC=40°,則∠D的度數(shù)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在長(zhǎng)方形ABCD中,AB=8cmBC=12cm,EAB的中點(diǎn),動(dòng)點(diǎn)P在線段BC上以4cm/s的速度由點(diǎn)BC運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在線段CD上由點(diǎn)C向點(diǎn)D運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts).

1)當(dāng)t=2時(shí),求EBP的面積;

2)若動(dòng)點(diǎn)Q以與動(dòng)點(diǎn)P不同的速度運(yùn)動(dòng),經(jīng)過(guò)多少秒,EBPCQP全等?此時(shí)點(diǎn)Q的速度是多少?

3)若動(dòng)點(diǎn)Q以(2)中的速度從點(diǎn)C出發(fā),動(dòng)點(diǎn)P以原來(lái)的速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿長(zhǎng)方形ABCD的四邊形運(yùn)動(dòng),經(jīng)過(guò)多少秒,點(diǎn)P與點(diǎn)Q第一次在長(zhǎng)方形ABCD的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,A、B兩點(diǎn)同時(shí)從原點(diǎn)O出發(fā),點(diǎn)A以每秒x個(gè)單位長(zhǎng)度沿x軸的負(fù)方向運(yùn)動(dòng),點(diǎn)B以每秒y個(gè)單位長(zhǎng)度沿y軸的正方向運(yùn)動(dòng).

1)若|x+2y-10|+|2x-y|=0,試分別求出1秒鐘后AOB的面積;

2)如圖2,所示,設(shè)∠BAO的鄰補(bǔ)角和∠ABO的鄰補(bǔ)角的平分線相交于點(diǎn)P,問:點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠P的大小是否會(huì)發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由;

3)如圖3所示,延長(zhǎng)BAE,在∠ABO的內(nèi)部作射線BFx軸于點(diǎn)C,若∠EAC、∠FCA、∠ABC的平分線相交于點(diǎn)G,過(guò)點(diǎn)GBE的垂線,垂足為H,設(shè)∠AGH=α,∠BGC=β,試探究出αβ滿足的數(shù)量關(guān)系并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正三角形ABC中,已知點(diǎn)P是三角形內(nèi)任意一點(diǎn),則點(diǎn)P到三角形三邊距離之和PD+PE+PF的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在今年年初,新型冠狀病毒在武漢等地區(qū)肆虐,為了緩解湖北地區(qū)的疫情,全國(guó)各地的醫(yī)療隊(duì)員都紛紛報(bào)名支援湖北,某方艙醫(yī)院需要8組醫(yī)護(hù)人員支援,要求每組分配的人數(shù)相同,若按每組人數(shù)比預(yù)定人數(shù)多分配1人,則總數(shù)會(huì)超過(guò)100人,若每組人數(shù)比預(yù)定人數(shù)少分配一人,則總數(shù)不夠90人,那么預(yù)定每組分配的人數(shù)是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從共享單車,共享汽車等共享出行到共享雨傘等共享物品,各式各樣的共享經(jīng)濟(jì)模式在各個(gè)領(lǐng)域迅速的普及.

(1) 為獲得東臺(tái)市市民參與共享經(jīng)濟(jì)的活動(dòng)信息,下列調(diào)查方式中比較合理的是   

A.對(duì)某學(xué)校的全體同學(xué)進(jìn)行問卷調(diào)查

B.對(duì)某小區(qū)的住戶進(jìn)行問卷調(diào)查

C.在全市里的不同社區(qū),選取部分市民進(jìn)行問卷調(diào)查

(2) 調(diào)查小組隨機(jī)調(diào)查了東臺(tái)市民騎共享單車情況,某社區(qū)年齡在1236歲的人有1000人,從中隨機(jī)抽取了100人,統(tǒng)計(jì)了他們騎共享單車的人數(shù),并繪制了如下不完整的統(tǒng)計(jì)圖表.

騎共享單車的人數(shù)統(tǒng)計(jì)表

年齡段()

頻數(shù)

頻率

12≤x16

2

0.02

16≤x20

3

0.03

20≤x24

15

a

24≤x28

25

0.25

28≤x32

b

0.30

32≤x36

25

0.25

根據(jù)以上信息解答下列問題:

求出統(tǒng)計(jì)表中的a、b,并補(bǔ)全頻數(shù)分布直方圖;

試估計(jì)這個(gè)社區(qū)年齡在20歲到32(20歲,不含32)騎共享單車的人有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案