【題目】 某蛋糕店出售網(wǎng)紅奶昔包,成本為30/件,每天銷售y(件)與銷售單價x(元)之間存在一次函數(shù)關(guān)系,當(dāng)以40元每件出售時,每天可以賣300件,當(dāng)以55元每件出售時,每天可以賣150件.

1)求yx之間的函數(shù)關(guān)系式;

2)如果規(guī)定每天奶昔包的銷售量不低于240件,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?

3)該蛋糕店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試直接寫出該奶昔包銷售單價的范圍.

【答案】1y=-10x+700;(2)當(dāng)銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;(3)當(dāng)45≤x≤55時,捐款后每天剩余利潤不低于3600元.

【解析】

1)可用待定系數(shù)法來確定yx之間的函數(shù)關(guān)系式;

2)根據(jù)利潤=銷售量×單件的利潤,然后將(1)中的函數(shù)式代入其中,求出利潤和銷售單件之間的關(guān)系式,然后根據(jù)其性質(zhì)來判斷出最大利潤;

3)首先得出捐款后w′與x的函數(shù)關(guān)系式,進(jìn)而利用所獲利潤等于3600元時,對應(yīng)x的值,根據(jù)函數(shù)的增減性,即可求出x的取值范圍.

解:(1)設(shè)yx之間的函數(shù)關(guān)系式:y=kx+b,

由題意得:,解得:

yx之間的函數(shù)關(guān)系式為:y=-10x+700

2)由題意,得-10x+700≥240,

解得x≤46

設(shè)利潤為w元,

w=x-30y=x-30)(-10x+700=-10x2+1000x-21000=-10x-502+4000

-100,

x50時,wx的增大而增大,

x=46時,w最大值=-10×(46-502+4000=3840,

答:當(dāng)銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元.

3)根據(jù)題意得,w=w-150=-10x2+1000x-21000-150,

當(dāng)w=-10x2+1000x-21000-150=3600時,

-10x-502=-250,

解得:x1=55x2=45,

a=-100

∴當(dāng)45≤x≤55時,捐款后每天剩余利潤不低于3600元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=ax2+x+c(a≠0)的圖象與y軸交于點A(0,4),與x軸交于點B、C,點C坐標(biāo)為(8,0),連接AB、AC.

(1)請直接寫出二次函數(shù)y=ax2+x+c的表達(dá)式;

(2)判斷△ABC的形狀,并說明理由;

(3)若點N在x軸上運(yùn)動,當(dāng)以點A、N、C為頂點的三角形是等腰三角形時,請寫出此時點N的坐標(biāo);

(4)如圖2,若點N在線段BC上運(yùn)動(不與點B、C重合),過點N作NM∥AC,交AB于點M,當(dāng)△AMN面積最大時,求此時點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】面對新冠肺炎疫情對經(jīng)濟(jì)運(yùn)行的沖擊,中國人民銀行營業(yè)管理部(中國人民銀行總行在京派駐機(jī)構(gòu))與相關(guān)部門多方動員,合力推動轄內(nèi)9家全國性銀行北京分行和3家地方法人銀行為疫情防控重點企業(yè)提供優(yōu)惠利率貸款,有力有序推動企業(yè)復(fù)工復(fù)產(chǎn).截至202042日,已發(fā)放優(yōu)惠利率貸款573筆,金額280 億元.將280 億元用科學(xué)記數(shù)法表示應(yīng)為(

A.28×B.2.8×C.2.8×D.2.8×

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,點是坐標(biāo)原點,一次函數(shù)與反比例函數(shù)的圖象交于兩點.

(1)的值.

(2)根據(jù)圖象寫出當(dāng)時,的取值范圍.

(3)若一次函數(shù)圖象與軸、軸分別交于點,則求出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中實線所示,函數(shù)y=|a(x﹣1)2﹣1|的圖象經(jīng)過原點,小明同學(xué)研究得出下面結(jié)論:

①a=1;②若函數(shù)yx的增大而減小,則x的取值范圍一定是x<0;

若方程|a(x﹣1)2﹣1|=k有兩個實數(shù)解,則k的取值范圍是k>1;

M(m1,n),N(m2,n),P(m3,n),Q(m4,n)(n>0)是上述函數(shù)圖象的四個不同點,且m1<m2<m3<m4,則有m2+m3﹣m1=m4.其中正確的結(jié)論有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定,中小學(xué)生每天在校體育鍛煉時間不小于1小時,某地區(qū)就每天在校體育鍛煉時間的問題隨機(jī)調(diào)查了若干名中學(xué)生,根據(jù)調(diào)查結(jié)果制作如下統(tǒng)計圖(不完整).其中分組情況:A組:時間小于0.5小時;B組:時間大于等于0.5小時且小于1小時;C組:時間大于等于1小時且小于1.5小時;D組:時間大于等于1.5小時.

根據(jù)以上信息,回答下列問題:

1A組的人數(shù)是   人,并補(bǔ)全條形統(tǒng)計圖;

2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在組   

3)根據(jù)統(tǒng)計數(shù)據(jù)估計該地區(qū)25 000名中學(xué)生中,達(dá)到國家規(guī)定的每天在校體育鍛煉時間的人數(shù)約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一款落地?zé)舻臒糁?/span>垂直于水平地面,高度為1.6米,支架部分的形狀為開口向下的拋物線,其頂點距燈柱的水平距離為0.8米,距地面的高度為2.4米,燈罩距燈柱的水平距離為1.4米,則燈罩頂端D距地面的高度為______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請分別在下列圖中使用無刻度的直尺按要求畫圖.

1)在圖1中,點PABCDAD上的中點,過點P畫一條線段PM,使PMAB

2)在圖2中,點A、D分別是BCEFFBEC上的中點,且點P是邊EC上的動點,畫出△PAB的一條中位線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在證明“已知:如圖,,,.求證:.”時,兩位同學(xué)的證法如下:

證法一:由勾股定理,得

的面積的面積

的面積的面積

證法二:

,

,

1)反思:上述兩位同學(xué)的證法中,有一位同學(xué)已完成的證明部分有一處錯誤,請把錯誤序號寫出.

2)請你選擇其中一種證法,完成證明.

查看答案和解析>>

同步練習(xí)冊答案