已知拋物線y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過(guò)第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說(shuō)明理由;
(3)若直線y2=2x+m經(jīng)過(guò)點(diǎn)B,且于該拋物線交于另一點(diǎn)C(數(shù)學(xué)公式),求當(dāng)x≥1時(shí)y1的取值范圍.

解:(1)∵拋物線y1=ax2+bx+c(a≠0,a≠c),經(jīng)過(guò)A(1,0),
把點(diǎn)代入函數(shù)即可得到:b=-a-c;

(2)B在第四象限.
理由如下:∵拋物線y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),

所以拋物線與x軸有兩個(gè)交點(diǎn),
又因?yàn)閽佄锞不經(jīng)過(guò)第三象限,
所以a>0,且頂點(diǎn)在第四象限;

(3)∵,且在拋物線上,
∴b+8=0,∴b=-8,
∵a+c=-b,∴a+c=8,
把B、C兩點(diǎn)代入直線解析式易得:c-a=4,

解得:,
如圖所示,C在A的右側(cè),
∴當(dāng)x≥1時(shí),
分析:(1)拋物線經(jīng)過(guò)A(1,0),把點(diǎn)代入函數(shù)即可得到b=-a-c;
(2)判斷點(diǎn)在哪個(gè)象限,需要根據(jù)題意畫(huà)圖,由條件:圖象不經(jīng)過(guò)第三象限就可以推出開(kāi)口向上,a>0,只需要知道拋物線與x軸有幾個(gè)交點(diǎn)即可解決,
判斷與x軸有兩個(gè)交點(diǎn),一個(gè)可以考慮△,由△就可以判斷出與x軸有兩個(gè)交點(diǎn),所以在第四象限;或者直接用公式法(或十字相乘法)算出,由兩個(gè)不同的解,進(jìn)而得出點(diǎn)B所在象限;
(3)當(dāng)x≥1時(shí),y1的取值范圍,只要把圖象畫(huà)出來(lái)就清晰了,難點(diǎn)在于要觀察出是拋物線與x軸的另一個(gè)交點(diǎn),理由是,由這里可以發(fā)現(xiàn),b+8=0,b=-8,a+c=8,還可以發(fā)現(xiàn)C在A的右側(cè);可以確定直線經(jīng)過(guò)B、C兩點(diǎn),看圖象可以得到,x≥1時(shí),y1大于等于最小值,此時(shí)算出二次函數(shù)最小值即可,即求出即可,已經(jīng)知道b=-8,a+c=8,算出a,c即可,即是要再找出一個(gè)與a,c有關(guān)的式子,即可解方程組求出a,c,直線經(jīng)過(guò)B、C兩點(diǎn),把B、C兩點(diǎn)坐標(biāo)代入直線消去m,整理即可得到c-a=4聯(lián)立a+c=8,解得c,a,即可得出y1的取值范圍.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的綜合應(yīng)用以及根與系數(shù)的關(guān)系和一次函數(shù)與二次函數(shù)交點(diǎn)問(wèn)題等知識(shí),根據(jù)數(shù)形結(jié)合得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a、c為實(shí)數(shù),直線y1=(a+1)x-1,拋物線y2=x2+ax+c.
(Ⅰ)在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線與x軸的負(fù)半軸交于點(diǎn)A,與y軸的正半軸交于點(diǎn)B,若c=2,tan∠ABO=
12
,求拋物線的解析式;
(Ⅱ)若c>0,證明在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,直線與拋物線對(duì)應(yīng)的y1<y2均成立;
(Ⅲ)若a=-1,當(dāng)-1<x<4時(shí),拋物線與x軸有公共點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題:(1)如圖,在四個(gè)正方形拼接成的圖形中,以A1、A2、A3、…、A10這十個(gè)點(diǎn)中任意三點(diǎn)為頂點(diǎn),共能組成
 
個(gè)等腰直角三角形.
精英家教網(wǎng)
(2)已知y1=-ax2-ax+1的頂點(diǎn)P的縱坐標(biāo)為
98
,且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過(guò)q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點(diǎn),試問(wèn)當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請(qǐng)寫(xiě)出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當(dāng)a=
12
時(shí),設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(E在F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)坐標(biāo),請(qǐng)寫(xiě)出一個(gè)你所得到的正確結(jié)論,并說(shuō)明理由;
(3)設(shè)上述兩條拋物線相交于A,B兩點(diǎn),直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過(guò)A,B兩點(diǎn),l在直線l1精英家教網(wǎng),l2之間,且l與兩條拋物線分別交于C,D兩點(diǎn),求線段CD的最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:044

已知拋物線y=2x2和直線y=ax+5.

(1)求證:拋物線與直線一定有兩個(gè)不同的交點(diǎn);

(2)設(shè)A(x1,y1)、B(x2,y2)是拋物線與直線的兩個(gè)交點(diǎn),點(diǎn)P是線段AB的中點(diǎn),且點(diǎn)P的橫坐標(biāo)為,試用含a的代數(shù)式表示點(diǎn)P的縱坐標(biāo);

(3)設(shè)A,B兩點(diǎn)的距離d=·|x1-x2|,試用含a的代數(shù)式表示d.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請(qǐng)寫(xiě)出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當(dāng)時(shí),設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(E在F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)坐標(biāo),請(qǐng)寫(xiě)出一個(gè)你所得到的正確結(jié)論,并說(shuō)明理由;
(3)設(shè)上述兩條拋物線相交于A,B兩點(diǎn),直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過(guò)A,B兩點(diǎn),l在直線l1,l2之間,且l與兩條拋物線分別交于C,D兩點(diǎn),求線段CD的最大值?

查看答案和解析>>

同步練習(xí)冊(cè)答案