【題目】在□ABCD,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
【答案】(1)見解析(2)見解析
【解析】
試題(1)根據(jù)平行四邊形的性質(zhì),可得AB與CD的關(guān)系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;
(2)根據(jù)平行線的性質(zhì),可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質(zhì),可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.
試題(1)證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四邊形BFDE是平行四邊形.
∵DE⊥AB,
∴∠DEB=90°,
∴四邊形BFDE是矩形;
(2)∵四邊形ABCD是平行四邊形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC===5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,3n),點(diǎn)B的坐標(biāo)為(5n+2,1).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)將一次函數(shù)y=kx+b的圖象沿y軸向下平移a個(gè)單位,使平移后的圖象與反比例函數(shù)y= 的圖象有且只有一個(gè)交點(diǎn),求a的值;
(3)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=5,則點(diǎn)E的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某小區(qū)實(shí)施供暖改造工程,現(xiàn)甲、乙兩工程隊(duì)分別同時(shí)開挖兩條600米長(zhǎng)的管道,所挖管道長(zhǎng)度y(米)與挖掘時(shí)間x(天)之間的關(guān)系如圖所示,則下列說法中,正確的個(gè)數(shù)有( )個(gè).
①甲隊(duì)每天挖100米;
②乙隊(duì)開挖兩天后,每天挖50米;
③當(dāng)x=4時(shí),甲、乙兩隊(duì)所挖管道長(zhǎng)度相同;
④甲隊(duì)比乙隊(duì)提前2天完成任務(wù).
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】①甲隊(duì)每天挖=100米,正確.
②乙隊(duì)開挖兩天后,每天挖; 米,正確.
③當(dāng)x=4時(shí),甲、乙兩隊(duì)交點(diǎn)在x=4處,所以挖管道長(zhǎng)度相同.正確.
④由②知,甲挖完的時(shí)候,乙還有100米,1002. 甲隊(duì)比乙隊(duì)提前2天完成任務(wù).正確.
故選D.
【題型】單選題
【結(jié)束】
11
【題目】103 000用科學(xué)記數(shù)法表示為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD內(nèi)接于⊙O,點(diǎn)E為AD上一點(diǎn),連接AC,CB,∠B=∠AEC.
(1)如圖1,求證:CE=CD;
(2)如圖2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度數(shù);
(3)如圖3,在(2)的條件下,延長(zhǎng)CE交⊙O于點(diǎn)G,若tan∠BAC= ,EG=2,求AE的長(zhǎng).
【答案】(1)見解析;(2)60°;(3)7.
【解析】試題分析:(1)利用圓的內(nèi)接四邊形定理得到∠CED=∠CDE.
(2) 作CH⊥DE于H, 設(shè)∠ECH=α,由(1)CE=CD,用α表示∠CAE,∠BAC,而∠BAD=∠BAC+∠CAE.(3)連接AG,作GN⊥AC,AM⊥EG,先證明∠CAG=∠BAC,設(shè)NG=5m,可得AN=11m,利用直角AGM, AEM,勾股定理可以算出m的值并求出AE長(zhǎng).
試題解析:
(1)解:證明:∵四邊形ABCD內(nèi)接于⊙O.
∴∠B+∠D=180°,
∵∠B=∠AEC,
∴∠AEC+∠D=180°,
∵∠AEC+∠CED=180°,
∴∠D=∠CED,
∴CE=CD.
(2)解:作CH⊥DE于H.
設(shè)∠ECH=α,由(1)CE=CD,
∴∠ECD=2α,
∵∠B=∠AEC,∠B+∠CAE=120°,
∴∠CAE+∠AEC=120°,
∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,
∴∠CAE=90°﹣∠ACH=90°﹣(60°+α)=30°﹣α,
∠ACD=∠ACH+∠HCD=60°+2α,
∵∠ACD=2∠BAC,
∴∠BAC=30°+α,
∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°.
(3)解:連接AG,作GN⊥AC,AM⊥EG,
∵∠CED=∠AEG,∠CDE=∠AGE,∠CED=∠CDE,
∴∠AEG=∠AGE,
∴AE=AG,
∴EM=MG=EG=1,
∴∠EAG=∠ECD=2α,
∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,
∵tan∠BAC=,
∴設(shè)NG=5m,可得AN=11m,AG==14m,
∵∠ACG=60°,
∴CN=5m,AM=8m,MG==2m=1,
∴m=,
∴CE=CD=CG﹣EG=10m﹣2=3,
∴AE===7.
【題型】解答題
【結(jié)束】
27
【題目】二次函數(shù)y=(x﹣1)2+k分別與x軸、y軸交于A、B、C三點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),直線y=﹣x+2經(jīng)過點(diǎn)B,且與y軸交于點(diǎn)D.
(1)如圖1,求k的值;
(2)如圖2,在第一象限的拋物線上有一動(dòng)點(diǎn)P,連接AP,過P作PE⊥x軸于點(diǎn)E,過E作EF⊥AP于點(diǎn)F,過點(diǎn)D作平行于x軸的直線分別與直線FE、PE交于點(diǎn)G、H,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段GH的長(zhǎng)為d,求d與t的函數(shù)關(guān)系式,并直接寫出t的取值范圍;
(3)在(2)的條件下,過點(diǎn)G作平行于y軸的直線分別交AP、x軸和拋物線于點(diǎn)M、T和N,tan∠MEA= ,點(diǎn)K為第四象限拋物線上一點(diǎn),且在對(duì)稱軸左側(cè),連接KA,在射線KA上取一點(diǎn)R,連接RM,過點(diǎn)K作KQ⊥AK交PE的延長(zhǎng)線于Q,連接AQ、HK,若∠RAE﹣∠RMA=45°,△AKQ與△HKQ的面積相等,求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=(2m+4)x,求:
(1)m為何值時(shí),函數(shù)圖象經(jīng)過第一、三象限?
(2)m為何值時(shí),y隨x的增大而減?
(3)m為何值時(shí),點(diǎn)(1,3)在該函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,且經(jīng)A(1,0)、
B(0,﹣3)兩點(diǎn).(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=﹣1上,是否存在點(diǎn)M,使它到點(diǎn)A的距離與到點(diǎn)B的距離之和最小,如果存在求出點(diǎn)M的坐標(biāo),如果不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,為中點(diǎn),過點(diǎn)的直線分別與,交于點(diǎn),,連結(jié),交于點(diǎn),連結(jié),.若,,則下列結(jié)論:①;②垂直平分線段;③;④四邊形是菱形.其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)非負(fù)實(shí)數(shù)x“四含五入”到個(gè)位的值記為,即當(dāng)n為非負(fù)整數(shù)時(shí),若n-≤x<n+,則=n.如:,,……根據(jù)以上材料,解決下列問題:
(1)填空= ,= ;
(2)若,則x的取值范圍是 ;
(3)求滿足的所有實(shí)數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購(gòu)買一批足球,已知購(gòu)買2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購(gòu)買4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價(jià).
(2)求該校購(gòu)買20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com