【題目】一大門(mén)欄桿的平面示意圖如圖所示,BA垂直地面AE于點(diǎn)A,CD平行于地面AE,∠BCD=150°,∠ABC的度數(shù).

【答案】120°.

【解析】

首先過(guò)點(diǎn)BBFCD,由CDAE,可得CDBFAE,繼而證得∠1+BCD=180°,2+BAE=180°,又由BA垂直于地面AEABCD=150°,求得答案.

如圖,過(guò)點(diǎn)B BGAE.

CDAE,

BGCD,

∴∠GBCBCD =180°.又∠BCD= 150°,

∴∠GBC=180°-BCD=180o -150°=30°.

BAAE,∴∠BAE = 90°.

BGAE

∴∠GBABAE =180°,

∴∠GBA=180°-BAE =90°.

∴∠ABCGBAGBC=90°+30°=120°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:

(1)如果∠1=∠B,那么______________,根據(jù)是__________________________;

(2)如果∠3=∠D,那么______________,根據(jù)是__________________________;

(3)如果要使BE∥DF,必須∠1=∠_______,根據(jù)是_________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一架飛機(jī)在兩城之間飛行,風(fēng)速為24千米/小時(shí),順風(fēng)飛行需2小時(shí)50分,逆風(fēng)飛行需要3小時(shí).

(1)求無(wú)風(fēng)時(shí)飛機(jī)的飛行速度;

(2)求兩城之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過(guò)程,請(qǐng)?zhí)羁?/span>.

解:∵OA⊥OB(已知)

所以_____=90°________

因?yàn)?/span>_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,

所以______=_____(等量代換)

所以______=90°

所以OC⊥OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)若多邊形的內(nèi)角和為 2340°,求此多邊形的邊數(shù);

(2)一個(gè) n 邊形的每個(gè)外角都相等,如果它的內(nèi)角與相鄰?fù)饨堑亩葦?shù)之比為 13: 2,求 n 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,E為BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:△ABE≌△FCE;
(2)過(guò)點(diǎn)D作DG⊥AE于點(diǎn)G,H為DG的中點(diǎn).判斷CH與DG的位置關(guān)系, 并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CD 相交于點(diǎn)O,∠AOD=3BOD+20°.

(1)求∠BOD的度數(shù);

(2)O為端點(diǎn)引射線OE,OF ,射線OE平分∠BOD,且∠EOF= 90°,求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(0,n),以點(diǎn)B為直角頂點(diǎn),點(diǎn)C在第二象限內(nèi),作等腰直角△ABC.則點(diǎn)C的坐標(biāo)是_____(用字母n表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D是射線CB上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當(dāng)點(diǎn)D在線段CB上,且∠BAC=90°時(shí),那么∠DCE= 度;

(2)設(shè)∠BAC= ,∠DCE=

① 如圖2,當(dāng)點(diǎn)D在線段CB上,∠BAC≠90°時(shí),請(qǐng)你探究之間的數(shù)量關(guān)系,并證明你的結(jié)論;

② 如圖3,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上,∠BAC≠90°時(shí),請(qǐng)將圖3補(bǔ)充完整,并直接寫(xiě)出此時(shí)之間的數(shù)量關(guān)系(不需證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案