【題目】如圖是一副眼鏡鏡片下半部分輪廓對應的兩條拋物線關于y軸對稱.ABx軸,AB=4cm,最低點Cx軸上,高CH=1cmBD=2cm.則右輪廓線DFE所在拋物線的函數(shù)解析式為__________________________________

【答案】y= x32

【解析】

B、D關于y軸對稱,CH=1cm,BD=2cm可得到D點坐標為(1,1),由AB=4cm,最低點Cx軸上,則AB關于直線CH對稱,可得到左邊拋物線的頂點C的坐標為(-3,0),于是得到右邊拋物線的頂點F的坐標為(30),然后設頂點式利用待定系數(shù)法求拋物線的解析式.

解:∵高CH=1cmBD=2cm,ABx軸,
BD關于y軸對稱,
D點坐標為(1,1),
ABx軸,AB=4cm,最低點Cx軸上,
AB關于直線CH對稱,
∴左邊拋物線的頂點C的坐標為(-3,0),
∴右邊拋物線的頂點F的坐標為(3,0),
設右邊拋物線的解析式為y=ax-32
D1,1)代入得1=a×1-32,解得a=,
故右邊拋物線的解析式為y=x-32
故答案為:y=x-32

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將平行四邊形ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F

1)求證:AC=BE

2)若∠AFC=2D,連接ACBE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2+2x+3的頂點為D,它與x軸交于AB兩點(點A在點B的左側),與y軸交于點C

1)求頂點D的坐標;

2)求直線BC的解析式;

3)求△BCD的面積;

4)當點P在直線BC上方的拋物線上運動時,△PBC的面積是否存在最大值?若存在,請求出這個最大值,并且寫出此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象在第一象限相交于點A1,﹣k+4).

1)試確定這兩個函數(shù)的表達式;

2)求△AOB的面積;

3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是等邊三角形ABC內一點,將線段AD繞點A順時針旋轉60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩個全等的直角三角形ABCDBE按圖方式擺放,其中,點E落在AB上,DE所在直線交AC所在直線于點F

求證:;

若將圖中的繞點B按順時針方向旋轉角a,且,其他條件不變,如圖請你直接寫出DE的大小關系:______

若將圖的繞點B按順時針方向旋轉角,且,其他條件不變,如圖請你寫出此時AFEFDE之間的關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于⊙O,AB=AC,∠BAC=36°,過點A作ADBC,與ABC的平分線交于點D,BD與AC交于點E,與O交于點F.

(1)求DAF的度數(shù);

(2)求證:AE2=EFED;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸的負半軸于點.軸正半軸上一點,點關于點的對稱點恰好落在拋物線上.過點軸的平行線交拋物線于另一點.若點的橫坐標為1,則的長為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:有一內角為直角的三角形叫做直角三角形.類似地我們定義:有一內角為的三角形叫做半直角三角形.如圖,在平面直角坐標系中,為原點,,軸上的一個動點,、、按順時針方向排列),與經過、、三點的交于點,平分,連結,.顯然、、是半直角三角形.

1)求證:是半直角三角形;

2)求證:;

3)若點的坐標為,求的長;

4軸于點,求△ACF與△BCA的面積之比.

查看答案和解析>>

同步練習冊答案