9、如果一個(gè)三角形的三邊a、b、c滿足a2+b2+c2+338=10a+24b+26c,則這個(gè)三角形一定是( 。
分析:先把a(bǔ)2+b2+c2+338=10a+24b+26c化為完全平方公式的形式,再根據(jù)非負(fù)數(shù)的性質(zhì)求出a、b、c的長(zhǎng),再根據(jù)勾股定理的逆定理進(jìn)行判斷即可.
解答:解:∵a2+b2+c2+338=10a+24b+26c
∴a2+b2+c2+338-10a-24b-26c=0
可化為(a-5)2+(b-12)2(c-13)2=0,
∴a-5=0,b-12=0,c-13=0,
∴a=5,b=12,c=13.
∵52+122=132
∴△ABC是直角三角形.
故選:B.
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)是因式分解的應(yīng)用,先把a(bǔ)2+b2+c2=10a+24b+26c-338化為完全平方的形式是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果一個(gè)三角形的三邊之比是1:2:
3
,判斷此三角形的形狀是
 
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一個(gè)三角形的三邊長(zhǎng)分別為1、k、4.則化簡(jiǎn)|2k-5|-
k2-12k+36
的結(jié)果是( 。
A、3k-11B、k+1
C、1D、11-3k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一個(gè)三角形的三邊長(zhǎng)分別為1,k,3,則化簡(jiǎn)7-
4k2-36k+81
-|2k-3|
的結(jié)果是( 。
A、-5B、1
C、13D、19-4k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀與解答:
古希臘的幾何學(xué)家海倫,在他的著作《度量》一書中,給出了下面一個(gè)公式:
如果一個(gè)三角形的三邊長(zhǎng)分別為a,b,c,設(shè)p=
a+b+c
2
,則三角形的面積為S=
p(p-a)(p-b)(p-c)

請(qǐng)你解答:在△ABC中,BC=4,AC=5,AB=6,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

【閱讀理解】
“海倫(Heron)公式”:如果一個(gè)三角形的三邊長(zhǎng)分別為a,b,c,設(shè)p=
a+b+c
2
,則三角形的面積為S=
p(p-a)(p-b)(p-c)

【問題解決】
(1)如圖,在△ABC中,BC=2.5,AC=6,AB=6.5.請(qǐng)用“海倫公式”求△ABC的面積.
(2)小怡同學(xué)認(rèn)為(1)中運(yùn)算太繁,并想到了一種不同的解法.你知道他想到了什么方法?請(qǐng)寫出來.

查看答案和解析>>

同步練習(xí)冊(cè)答案