【題目】探索與研究:
方法1:如圖(a),對任意的符合條件的直角三角形繞其銳角頂點(diǎn)旋轉(zhuǎn)90°所得,所以
∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖示寫出證明勾股定理的過程;
方法2:如圖(b),是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
【答案】解:方法1:∵由圖(a)可知S正方形ACFD=S四邊形ABFE ,
∴S正方形ACFD=S⊿BAE+S⊿BFE
又∵正方形ACFD的邊長為b, SRt△BAE= ,SRt△BFE=
∴b2 = +
即2b2 =c2 +(b+a)(b-a)
整理得: a2 +b2=c2
方法2:如圖(b)中,Rt△BEA和Rt△ACD全等, 設(shè)CD=a,AC=b,AD=c(b>a),
則AE=a,BE=b,AB=c,EC=b-a
由圖(b),S四邊形ABCD = SRt△BAE + SRt△ACD+SRt△BEC =SRt△BAD+S△BCD
又∵ SRt△BAE = , SRt△ACD = ,SRt△BEC = ,
SRt△BAD= ,S△BCD= ,
∴ + + = +
即2ab+b(b-a) = c2 +a(b-a)
整理得: a2 +b2=c2
【解析】方法1:由S正方形ACFD=S⊿BAE+S⊿BFE,從而列出方程進(jìn)行解答即可;
(2)方法2:由S四邊形ABCD = SRt△BAE + SRt△ACD+SRt△BEC =SRt△BAD+S△BCD,列方程解答即可。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】模型建立:如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點(diǎn)C,過A作AD⊥ED于D,過B作BE⊥ED于E.
(1)求證:△BEC≌△CDA;
(2)模型應(yīng)用:
①已知直線l1:y=- x-4與y軸交于A點(diǎn),將直線l1繞著A點(diǎn)逆時針旋轉(zhuǎn)45°至l2 , 如圖2,求l2的函數(shù)解析式;
②如圖3,矩形ABCO,O為坐標(biāo)原點(diǎn),B的坐標(biāo)為(8,-6),A、C分別在坐標(biāo)軸上,P是線段BC上動點(diǎn),設(shè)PC=m,已知點(diǎn)D在第四象限,且是直線y=-2x+6上的一點(diǎn),若△APD是不以點(diǎn)A為直角頂點(diǎn)的等腰Rt△,請求出點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.
(1)求證:BF=2AE;
(2)若CD= ,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你們班的同學(xué)中有在同一個月出生的嗎?有在同月同日出生的嗎?你的同學(xué)在哪個月出生最多?做個小調(diào)查,看看會有什么有趣的發(fā)現(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)(1,﹣3)在()
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com