【題目】如圖,D是△ABC內(nèi)一點(diǎn),BDCD,E、FG、H分別是邊ABBD、CDAC的中點(diǎn).若AD10,BD8,CD6,則四邊形EFGH的周長是( 。

A.24B.20C.12D.10

【答案】B

【解析】

利用勾股定理列式求出BC的長,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出EHFGBCEFGHAD,然后代入數(shù)據(jù)進(jìn)行計(jì)算即可得解.

BDCDBD8,CD6,

BC,

EF、GH分別是AB、AC、CDBD的中點(diǎn),

EHFGBC,EFGHAD,

∴四邊形EFGH的周長=EH+GH+FG+EFAD+BC

又∵AD10,

∴四邊形EFGH的周長=10+1020

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從地出發(fā),沿同一路線駛向地.甲車先出發(fā)勻速駛向地,后乙出發(fā),勻速行駛一段時(shí)間后,在途中的貨站裝貨耗時(shí)半小時(shí).由于滿載貨物,為了行駛安全,速度減少了,結(jié)果與甲車同時(shí)到達(dá)地,甲乙兩車距地的路程與乙車行駛時(shí)間之間的函數(shù)圖象如圖所示

1的值是________,甲的速度是________

2)求乙車距地的路程之間的函數(shù)關(guān)系式;

3)若甲乙兩車距離不超過時(shí),車載通話機(jī)可以進(jìn)行通話,則兩車在行駛過程中可以通話的總時(shí)長為多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(概念認(rèn)識(shí))

在同一個(gè)圓中兩條互相垂直且相等的弦定義為等垂弦,兩條弦所在直線的交點(diǎn)為等垂弦的分割點(diǎn).如圖①,ABCD是⊙O的弦,ABCD,ABCD,垂足為E,則AB、CD是等垂弦,E為等垂弦ABCD的分割點(diǎn).

(數(shù)學(xué)理解)

1)如圖②,AB是⊙O的弦,作OCOA、ODOB,分別交⊙O于點(diǎn)C、D,連接CD.求證: AB、CD是⊙O的等垂弦.

2)在⊙O中,⊙O的半徑為5,E為等垂弦AB、CD的分割點(diǎn),.求AB的長度.

(問題解決)

3ABCD是⊙O的兩條弦,CDAB,且CDAB,垂足為F

①在圖③中,利用直尺和圓規(guī)作弦CD(保留作圖痕跡,不寫作法).

②若⊙O的半徑為r,ABmrm為常數(shù)),垂足F與⊙O的位置關(guān)系隨m的值變化而變化,直接寫出點(diǎn)F與⊙O的位置關(guān)系及對(duì)應(yīng)的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兒童用藥的劑量常常按他們的體重來計(jì)算,某種藥品,體重的兒童,每次正常服用量為;體重的兒童每次正常服用量為;體重在范圍內(nèi)時(shí),每次正常服用量是兒童體重的一次函數(shù)中,現(xiàn)實(shí)中,該藥品每次實(shí)際服用量可以比每次正常服用略高一些,但不能超過正常服用量的12倍,否則會(huì)對(duì)兒童的身體造成較大損害.

1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2)若該藥品的一種包裝規(guī)格為/袋,求體重在什么范圍的兒童生病時(shí)可以一次服下一袋藥?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,請(qǐng)將下列過程補(bǔ)充完整:

收集數(shù)據(jù):

從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測試,測試成績(百分制)如下:

整理、描述數(shù)據(jù):

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績

人數(shù)

部門

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

0

0

1

11

7

1

(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70—79分為生產(chǎn)技能良好,60—69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)

分析數(shù)據(jù):

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:

部門

平均數(shù)

中位數(shù)

眾數(shù)

783

775

78

81

得出結(jié)論:

.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)約為

.可以推斷出 部門員工的生產(chǎn)技能水平高.理由為

(至少從兩個(gè)不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的對(duì)角線相交于點(diǎn)ODEAC,CEBD

(1)求證:四邊形OCED是菱形;

(2)若∠ACB30°,菱形OCED的而積為,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種水果按照果徑大小可分為4個(gè)等級(jí):標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果,某采購商從采購的一批該種水果中隨機(jī)抽取100個(gè),利用它的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:

等級(jí)

標(biāo)準(zhǔn)果

優(yōu)質(zhì)果

精品果

禮品果

個(gè)數(shù)

10

30

40

20

用樣本估計(jì)總體,果園老板提出兩種購銷方案給采購商參考,

方案1:不分類賣出,售價(jià)為20/個(gè);

方案2:分類賣出,分類后的水果售價(jià)如下:

等級(jí)

標(biāo)準(zhǔn)果

優(yōu)質(zhì)果

精品果

禮品果

售價(jià)(元/個(gè))

16

18

22

24

1)從采購商的角度考慮,應(yīng)該采用哪種購銷方案?

2)若采購商采購的該種水果的進(jìn)價(jià)不超過20/個(gè),則采購商可以獲利,現(xiàn)從這種水果的4個(gè)等級(jí)中任選2種,按方案2進(jìn)行購買,求這2種等級(jí)的水果至少有一種能使采購商獲利的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和圖形N,給出如下定義:如果Q為圖形N上一個(gè)動(dòng)點(diǎn),PQ兩點(diǎn)間距離的最大值為dmax,P,Q兩點(diǎn)間距離的最小值為dmin,我們把dmax + dmin的值叫點(diǎn)P和圖形N間的“和距離”,記作dP,圖形N).

1)如圖,正方形ABCD的中心為點(diǎn)O,A(33)

點(diǎn)O到線段AB的“和距離”dO,線段AB= ;

設(shè)該正方形與y軸交于點(diǎn)EF,點(diǎn)P在線段EF上,dP,正方形ABCD=7,求點(diǎn)P的坐標(biāo).

2)如圖2,在(1)的條件下,過C,D兩點(diǎn)作射線CD,連接AC,點(diǎn)M是射線CD上的一點(diǎn),如果dM,線段AD,直接寫出M點(diǎn)橫坐標(biāo)t取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形ABCD沿對(duì)角線BD翻折,點(diǎn)A落在點(diǎn)A′處,ADBC于點(diǎn)E,點(diǎn)FCD上,連接EF,且CE3CF,如圖1

1)試判斷△BDE的形狀,并說明理由;

2)若∠DEF45°,求tanCDE的值;

3)在(2)的條件下,點(diǎn)GBD上,且不與B、D兩點(diǎn)重合,連接EG并延長到點(diǎn)H,使得EHBE,連接BH、DH,將△BDH沿DH翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在EH的延長線上,如圖2.當(dāng)BH8時(shí),求GH的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案