已知兩個(gè)全等的直角三角形紙片ABC、DEF,如圖(1)放置,點(diǎn)B、D重合,點(diǎn)F在BC上,AB與EF交于點(diǎn)G、∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.
(1)求證:△EGB是等腰三角形;
(2)若紙片DEF不動(dòng),問△ABC繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)最小______度時(shí),四邊形ACDE成為以ED為底的梯形(如圖(2)).求此梯形的高.

【答案】分析:(1)根據(jù)題意,即可發(fā)現(xiàn)∠EBG=∠E=30°,從而證明結(jié)論;
(2)要使四邊形ACDE成為以ED為底的梯形,則需BC⊥DE,即可求得∠BFD=30°.再根據(jù)30°的直角三角形的性質(zhì)即可求解.
解答:(1)證明:∵∠C=∠EFB=90°,∠E=∠ABC=30°,
∴∠EBF=60°,
∴∠EBG=∠EBF-∠ABC=60°-30°=∠E.
∴GE=GB,
則△EGB是等腰三角形;

(2)解:要使四邊形ACDE成為以ED為底的梯形,
則需BC⊥DE,即可求得∠BFD=30°.
設(shè)BC與DE的交點(diǎn)是H.
在直角三角形DFE中,∠FDH=60°,DF=DE=2,
在直角三角形DFH中,F(xiàn)H=DF•cos∠BFD=2×cos30°=2×=
則CH=BC-BH=AB•cos∠ABC-(BF-FH)=2-(2-)=3-2.
即此梯形的高是3-2.
故答案為:3-2.
點(diǎn)評:此題主要是考查了30°的直角三角形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

三個(gè)全等的直角梯形①、②、③在平面直角坐標(biāo)系中的位置如圖所示,拋物線y=a精英家教網(wǎng)x2-bx-c經(jīng)過梯形的頂點(diǎn)A、B、C、D,已知梯形的兩條底邊長分別為4,6.
(1)求梯形的兩腰長;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衢州)如圖,把兩個(gè)全等的Rt△AOB和Rt△COD分別置于平面直角坐標(biāo)系中,使直角邊OB、OD在x軸上.已知點(diǎn)A(1,2),過A、C兩點(diǎn)的直線分別交x軸、y軸于點(diǎn)E、F.拋物線y=ax2+bx+c經(jīng)過O、A、C三點(diǎn).
(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段OC上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線交拋物線于點(diǎn)M,交x軸于點(diǎn)N,問是否存在這樣的點(diǎn)P,使得四邊形ABPM為等腰梯形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)若△AOB沿AC方向平移(點(diǎn)A始終在線段AC上,且不與點(diǎn)C重合),△AOB在平移過程中與△COD重疊部分面積記為S.試探究S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

三個(gè)全等的直角梯形①、②、③在平面直角坐標(biāo)系中的位置如圖所示,拋物線y=ax2-bx-c經(jīng)過梯形的頂點(diǎn)A、B、C、D,已知梯形的兩條底邊長分別為4,6.
(1)求梯形的兩腰長;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆四川德陽市中江縣柏樹中學(xué)九年級下學(xué)期第一次月考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,把兩個(gè)全等的Rt△AOB和Rt△COD分別置于平面直角坐標(biāo)系中,使直角邊OB、OD在x軸上.已知點(diǎn)A(1,2),過A、C兩點(diǎn)的直線分別交x軸、y軸于點(diǎn)E、F.拋物線y=ax2+bx+c經(jīng)過O、A、C三點(diǎn).

(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段OC上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線交拋物線于點(diǎn)M,交x軸于點(diǎn)N,問是否存在這樣的點(diǎn)P,使得四邊形ABPM為等腰梯形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)若△AOB沿AC方向平移(點(diǎn)A始終在線段AC上,且不與點(diǎn)C重合),△AOB在平移過程中與△COD重疊部分面積記為S.試探究S是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省寧波市江東區(qū)初三學(xué)業(yè)水平抽測數(shù)學(xué)試卷(解析版) 題型:解答題

三個(gè)全等的直角梯形①、②、③在平面直角坐標(biāo)系中的位置如圖所示,拋物線y=ax2-bx-c經(jīng)過梯形的頂點(diǎn)A、B、C、D,已知梯形的兩條底邊長分別為4,6.
(1)求梯形的兩腰長;
(2)求拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊答案