【題目】某校門口豎著“前方學校,減速慢行”的交通指示牌CD,數(shù)學“綜合與實踐”小組的同學將“測量交通指示牌CD的高度”作為一項課題活動,他們定好了如下測量方案:
項目 | 內(nèi)容 |
課題 | 測量交通指示牌CD的高度 |
測量示意圖 | |
測量步驟 | (1)從交通指示牌下的點M處出發(fā)向前走10 米到達A處; (2)在點A處用量角儀測得∠DAM=27°; (3)從點A沿直線MA向前走10米到達B處;(4)在點B處用量角儀測得∠CBA=18°. |
請你幫助該小組同學根據(jù)上表中的測量數(shù)據(jù),求出交通指示牌CD的高度.(參考數(shù)據(jù)sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,點從點出發(fā)沿向點勻速運動,速度是,過點作交于點,同時,點從點出發(fā)沿方向,在射線上勻速運動,速度是,連接、,與交與點,設(shè)運動時間為.
(1)當為何值時,四邊形是平行四邊形;
(2)設(shè)的面積為,求與的函數(shù)關(guān)系式;
(3)是否存在某一時刻,使得的面積為矩形面積的;
(4)是否存在某一時刻,使得點在線段的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A,D的⊙O分別交AB,AC于點E,F(xiàn),連接OF交AD于點G.
(1)求證:BC是⊙O的切線;
(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長;
(3)若BE=8,sinB=,求DG的長,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.
(1)求證:BE=EC
(2)填空:①若∠B=30°,AC=2,則DB= ;
②當∠B= 度時,以O,D,E,C為頂點的四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中點為圓心,OA的長為半徑作半圓交AC于點D,則圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于點,與軸的交點在和之間(不包括這兩點),對稱軸為直線.下列結(jié)論:①;②;③;④;⑤.其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在中,,,將繞頂點逆時針旋轉(zhuǎn)時,當時,設(shè)與于,證明:是等邊三角形;
(2)如圖1,在中,,,將繞頂點逆時針旋轉(zhuǎn)多少度時,,使得的頂點落在上?
(3)當直角三角形變?yōu)橐话闳切螘r,如圖2,將繞點逆時針旋轉(zhuǎn)得到,與交于點,可以得到,試證明:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學計劃購買A型和B型課桌凳共200套,經(jīng)招標,購買一套A型課桌凳比購買一套B型課桌凳少用40元,,且購買4套A型和6套B型課桌凳共需1820元。
(1)求購買一套A型課桌凳和一套B型課桌凳各需多少元?
(2)學校根據(jù)實際情況,要求購買這兩種課桌凳總費用不能超過40880元,并且購買A型課桌凳的數(shù)量不能超過B型課桌凳的,求該校本次購買A型和B型課桌凳共有幾種方案?哪種方案的總費用最低?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O,D為⊙O上一點,連接AD、BD、CD,且BD=AB
(1)求證:∠ABD=2∠BDC;
(2)若D為弧AC的中點,求tan∠BDC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com