【題目】先閱讀,再回答問(wèn)題:如果x1、x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,那么x1+x2 , x1x2與系數(shù)a、b、c的關(guān)系是:x1+x2= , ,例如:若x1、x2是方程2x2﹣x﹣1=0的兩個(gè)根,則x1+x2=﹣ = ,x1x2= .若x1、x2是方程2x2+x﹣3=0的兩個(gè)根.
(1)求x1+x2 , x1x2
(2)求 的值.

【答案】
(1)解:∵x1、x2是方程2x2+x﹣3=0的兩個(gè)根,

∴x1+x2=﹣ ,x1x2=﹣


(2)解:原式=

=

=﹣


【解析】(1)首先對(duì)照例子很容易得到求x1+x2,x1x2的值。
(2)易通過(guò)通分把所求式子轉(zhuǎn)化為含x1+x2,x1x2的式子,然后帶入x1+x2,x1x2的值容易求得最后結(jié)果。
【考點(diǎn)精析】關(guān)于本題考查的根與系數(shù)的關(guān)系,需要了解一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某中學(xué)準(zhǔn)備在校園里利用圍墻的一段,再砌三面墻,圍成一個(gè)矩形花園ABCD(圍墻MN最長(zhǎng)可利用25m),現(xiàn)在已備足可以砌50m長(zhǎng)的墻的材料,試設(shè)計(jì)一種砌法,使矩形花園的面積為300m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將ABC平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)EF分別是B、C的對(duì)應(yīng)點(diǎn).

1)請(qǐng)畫出平移后的DEF,并求DEF的面積.
2)若連接AD、CF,則這兩條線段之間的關(guān)系是
3)請(qǐng)?jiān)?/span>AB上找一點(diǎn)P,使得線段CP平分ABC的面積,在圖上作出線段CP

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ABC中,∠ABC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.

(1)證明四邊形ADCF是菱形;

(2)若AC=4,AB=5,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.

(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點(diǎn)D(保留作圖痕跡,不要求寫作法);

(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問(wèn)題:

尺規(guī)作圖:

已知:線段a,b

求作:等腰ABC,使ABACBCa,BC邊上的高為b

小濤的作圖步驟如下:

如圖

1)作線段BCa;

2)作線段BC的垂直平分線MN交線段BC

于點(diǎn)D

3)在MN上截取線段DAb,連接ABAC

所以ABC即為所求作的等腰三角形.

老師說(shuō):小濤的作圖步驟正確

請(qǐng)回答:得到ABC是等腰三角形的依據(jù)是:

_____;

_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B均在函數(shù) (k>0,x>0)的圖象上,⊙A與x軸相切,⊙B與y軸相切.若點(diǎn)B的坐標(biāo)為(1,6),⊙A的半徑是⊙B的半徑的2倍,則點(diǎn)A的坐標(biāo)為( )

A.(2,2)
B.(2,3)
C.(3, 2)
D.(4,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的文字,解答問(wèn)題.

大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能完全地寫出來(lái),于是小明用1來(lái)表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,用這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.

請(qǐng)解答下列問(wèn)題:

(1)求出+2的整數(shù)部分和小數(shù)部分;

(2)已知:10+=x+y,其中x是整數(shù),且0y1,請(qǐng)你求出(xy)的相反數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位同學(xué)本學(xué)期11次考試的測(cè)試成績(jī)?nèi)缦拢?/span>

98

100

100

90

96

91

89

99

100

100

93

98

99

96

94

95

92

92

98

96

99

97

1 他們的平均成績(jī)和方差各是多少?

2 分析他們的成績(jī)各有什么特點(diǎn)?

3 現(xiàn)要從兩人中選一人參加比賽,歷屆比賽成績(jī)表明,平時(shí)成績(jī)達(dá)到98分以上才可能進(jìn)入決賽,你認(rèn)為應(yīng)選誰(shuí)參加這次比賽?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案