如圖,已知二次函數(shù)(a≠0)的圖象經(jīng)過點(diǎn)A,點(diǎn)B.
(1)求二次函數(shù)的表達(dá)式;
(2)若反比例函數(shù)(x>0)的圖象與二次函數(shù)(a≠0)的圖象在第一象限內(nèi)交于點(diǎn),落在兩個(gè)相鄰的正整數(shù)之間,請你直接寫出這兩個(gè)相鄰的正整數(shù);
(3)若反比例函數(shù)(x>0,k>0)的圖象與二次函數(shù)(a≠0)的圖象在第一象限內(nèi)交于點(diǎn),且,試求實(shí)數(shù)k的取值范圍.

(1);(2)1與2;(3)5 < k < 18.

解析試題分析:(1)由圖可知:點(diǎn)A、點(diǎn)B的坐標(biāo)分別為(3,0),(1,0),把(1,0),和(-3,0)分別代入函數(shù)關(guān)系式得到方程組,解方程組,得,所以拋物線解析式為.
(2)觀察函數(shù)的圖象可以得到相鄰的兩個(gè)正整數(shù)為1和2.
(3)由函數(shù)圖象或函數(shù)性質(zhì)可知兩個(gè)函數(shù)的增減性.所以當(dāng)=2時(shí),反比例函數(shù)圖象在二次函數(shù)的圖象上方,得并由此解得k的取值范圍;當(dāng)=3時(shí),二次函數(shù)的圖象在反比例函數(shù)圖象上方的,得,并由此也可以求得k的取值范圍,從而得到k完整的取值范圍.
試題解析:(1)由圖可知:點(diǎn)A、點(diǎn)B的坐標(biāo)分別為(3,0),(1,0),
且在拋物線上,
,解得:  .
∴二次函數(shù)的表達(dá)式為.
(2)正確的畫出二次函數(shù)和反比例函數(shù)在第一象限內(nèi)的圖象

由圖象可知,這兩個(gè)相鄰的正整數(shù)為1與2.
(3)由題意可得:
 ,解得:5 < k < 18.
∴實(shí)數(shù)k的取值范圍為5 < k < 18.
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)y=x2+bx+c經(jīng)過點(diǎn)(-1,0)和點(diǎn)(0,-3).
(1)求二次函數(shù)的表達(dá)式;
(2)如果一次函數(shù)y=4x+m的圖象與二次函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求m的值和該公共點(diǎn)的坐標(biāo);
(3)將二次函數(shù)圖象y軸左側(cè)部分沿y軸翻折,翻折后得到的圖象與原圖象剩余部分組成一個(gè)新的圖象,該圖象記為G,如果直線y=4x+n與圖象G有3個(gè)公共點(diǎn),求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C(0,2),點(diǎn)M(m,n)是拋物線上一動(dòng)點(diǎn),位于對稱軸的左側(cè),并且不在坐標(biāo)軸上,過點(diǎn)M作x軸的平行線交y軸于點(diǎn)Q,交拋物線于另一點(diǎn)E,直線BM交y軸于點(diǎn)F.
(1)求拋物線的解析式,并寫出其頂點(diǎn)坐標(biāo);
(2)當(dāng)S△MFQ:S△MEB=1:3時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某水果店銷售某中水果,由歷年市場行情可知,從第1月至第12月,這種水果每千克售價(jià)y1(元)與銷售時(shí)間第x月之間存在如圖1(一條線段)的變化趨勢,每千克成本y2(元)與銷售時(shí)間第x月滿足函數(shù)關(guān)系式y(tǒng)2=mx2﹣8mx+n,其變化趨勢如圖2.

(1)求y2的解析式;
(2)第幾月銷售這種水果,每千克所獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于x一元二次方程有兩個(gè)不相等的實(shí)數(shù)根
(1)求k取值范圍;
(2)當(dāng)k最小的整數(shù)時(shí),求拋物線的頂點(diǎn)坐標(biāo)以及它與x軸的交點(diǎn)坐標(biāo);
(3)將(2)中求得的拋物線在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個(gè)新圖象.請你畫出這個(gè)新圖象,并求出新圖象與直線有三個(gè)不同公共點(diǎn)時(shí)m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線經(jīng)過點(diǎn)A(3,2),B(0,1)和點(diǎn)C
(1)求拋物線的解析式;
(2)如圖,若拋物線的頂點(diǎn)為P,點(diǎn)A關(guān)于對稱軸的對稱點(diǎn)為M,過M的直線交拋物線于另一點(diǎn)N(N在對稱軸右邊),交對稱軸于F,若,求點(diǎn)F的坐標(biāo);
(3)在(2)的條件下,在y軸上是否存在點(diǎn)G,使△BMA與△MBG相似?若存在,求點(diǎn)G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖象與x軸的正半軸交于A 、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C .點(diǎn)A和點(diǎn)B間的距離為2, 若將二次函數(shù)的圖象沿y軸向上平移3個(gè)單位時(shí),則它恰好過原點(diǎn),且與x軸兩交點(diǎn)間的距離為4.
(1)求二次函數(shù)的表達(dá)式;
(2)在二次函數(shù)的圖象的對稱軸上是否存在一點(diǎn)P,使點(diǎn)P到B、C兩點(diǎn)距離之差最大?若存在,求出點(diǎn)P坐標(biāo);若不存在,請說明理由;
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為D,在x軸上是否存在這樣的點(diǎn)F,使得?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,A是拋物線上的一個(gè)動(dòng)點(diǎn),且點(diǎn)A在第一象限內(nèi).AE⊥y軸于點(diǎn)E,點(diǎn)B坐標(biāo)為(O,2),直線AB交軸于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于y軸對稱,直線DE與AB相交于點(diǎn)F,連結(jié)BD.設(shè)線段AE的長為m,△BED的面積為S.
(1)當(dāng)時(shí),求S的值.
(2)求S關(guān)于的函數(shù)解析式.
(3)①若S=時(shí),求的值;
②當(dāng)m>2時(shí),設(shè),猜想k與m的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知OA=2,OC=4,⊙M與軸相切于點(diǎn)C,與軸交于A,B兩點(diǎn),∠ACD=90°,拋物線經(jīng)過A,B,C三點(diǎn).
(1)求證:∠CAO=∠CAD;
(2)求弦BD的長;
(3)在拋物線的對稱軸上是否存在點(diǎn)P使ΔPBC是以BC為腰的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案