【題目】如圖,在平面直角坐標系中,拋物線yax2+bx+ca≠0)與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,點A的坐標為(﹣1,0),且OCOBtanOAC4

1)求拋物線的解析式:

2)若點D和點C關于拋物線的對稱軸對稱,直線AD下方的拋物線上有一點P,過點PPHAD于點H,作PM平行于y軸交直線AD于點M,交x軸于點E,求PHM的周長的最大值.

【答案】1yx23x4;(2)△MPH的周長的最大值為

【解析】

1)先由銳角三角函數(shù)的定義求得C的坐標,從而得到點B的坐標,設拋物線的解析式為y=ax+1)(x-4),將點C的坐標代入求解即可;

2)先求得拋物線的對稱軸,從而得到點D3,-4),然后可求得直線AD的解析式y=-x-1,故∠BAD=45°,接下來證明△PMD為等腰直角三角形,所當PM有最大值時三角形的周長最大,設Pa,a2-3a-4),M-a-1),則PM=-a2+2a+3,然后利用配方可求得PM的最大值,最后根據(jù)△MPH的周長=求解即可.

1)∵點A的坐標為(﹣10),

OA1

又∵tanOAC4,

OC4,

C0,﹣4).

OCOB,

OB4,

B4,0).

設拋物線的解析式為yax+1)(x4),

∵將x0,y=﹣4代入得:﹣4a=﹣4,解得a1,

∴拋物線的解析式為yx23x4

2)∵拋物線的對稱軸為 ,C0,﹣4),

∵點D和點C關于拋物線的對稱軸對稱,

D3,﹣4),

設直線AD的解析式為ykx+b

∵將A(﹣1,0)、D3,﹣4)代入得 ,

解得k=﹣1b=﹣1,

∴直線AD的解析式y=﹣x1

∵直線AD的一次項系數(shù)k=﹣1,

∴∠BAD45°.

PM平行于y軸,

∴∠AEP90°,

∴∠PMH=∠AME45°.

∴△MPH的周長=,

Paa23a4),則Ma,﹣a1),

PM═﹣a1﹣(a23a4)=﹣a2+2a+3=﹣(a12+4

∴當a1時,PM有最大值,最大值為4

∴△MPH的周長的最大值=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中,,將繞點按逆時針方向旋轉,得到

1)如圖 1,當點在線段的延長線上時,求的度數(shù);

2)如圖 2,連接,.若的面積為 3,求的面積;

3)如圖 3,點為線段中點,點是線段上的動點,在繞點按逆時針方向旋轉的過程中,點的對應點是點,求線段長度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應弘揚傳統(tǒng)文化的號召,某學校倡導全校1200名學生進行經典詩詞誦背活動,并在活動之后舉辦經典詩詞大賽,為了解本次系列活動的持續(xù)效果,學校團委在活動啟動之初,隨機抽取部分學生調查一周詩詞誦背數(shù)量,根調查結果繪制成的統(tǒng)計圖(部分)如圖所示.

大賽結束后一個月,再次抽查這部分學生一周詩詞誦背數(shù)量,繪制成統(tǒng)計表

一周詩詞誦背數(shù)量

3

4

5

6

7

8

人數(shù)

10

10

15

40

25

20

請根據(jù)調查的信息

(1)活動啟動之初學生一周詩詞誦背數(shù)量的中位數(shù)為  ;

(2)估計大賽后一個月該校學生一周詩詞誦背6首(含6首)以上的人數(shù);

(3)選擇適當?shù)慕y(tǒng)計量,從兩個不同的角度分析兩次調查的相關數(shù)據(jù),評價該校經典詩詞誦背系列活動的效果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,上一動點,點從點以1個單位/秒的速度向點運動,遠動到點即停止,經過點作,交于點,以為一邊在一側作正方形,在點運動過程中,設正方形的重疊面積為,運動時間為秒,如圖2的函數(shù)圖象.

1)求的長;

2)求的值;

3)求的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1a),B兩點,與x軸交于點C

(1)ak的值及點B的坐標;

(2)若點Px軸上,且SACPSBOC,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的方程

(1)求證:m取任何值時,方程總有實根.

(2)若二次函數(shù)的圖像關于y軸對稱.

a、求二次函數(shù)的解析式

b、已知一次函數(shù),證明:在實數(shù)范圍內,對于同一x值,這兩個函數(shù)所對應的函數(shù)值均成立.

(3)在(2)的條件下,若二次函數(shù)的象經過(-5,0),且在實數(shù)范圍內,對于x的同一個值,這三個函數(shù)所對應的函數(shù)值均成立,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,邊上一點,連接,將矩形沿折疊,頂點恰好落在邊上點處,延長的延長線于點,連接

1)求的值;

2)求證:四邊形是菱形;

3)如圖2,,分別是線段上的動點(與端點不重合),且,設,,請解決以下相關問題:

①寫出關于的函數(shù)解析式;

②是否存在這樣的點,使是等腰三角形?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形的對角線交于點是直線上任意一點(異于點),過點作平行于 的直線交直線于點,交直線于點

1)當點在線段上時,如圖 ①,易證: (不用證明);

2)當點在線段的延長線上時,如圖 ;當點在線段的延長線上時,如圖 ③,線段之間又有怎樣的數(shù)量關系? 請寫出你的猜想,并選擇其中一種情況加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于⊙O,AB為直徑,作ODABAC于點D,延長BC,OD交于點F,過點C作⊙O的切線CE,交OF于點E

1)求證:ECED;

2)如果OA4,EF3,求弦AC的長.

查看答案和解析>>

同步練習冊答案