【題目】如圖是某臺(tái)階的一部分,如果A點(diǎn)的坐標(biāo)為(0,0),B點(diǎn)的坐標(biāo)為(1,1),

(1)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出其余各點(diǎn)的坐標(biāo);

(2)如果臺(tái)階有10級(jí),請(qǐng)你求出該臺(tái)階的長度和高度;

(3)若這10級(jí)臺(tái)階的寬度都是2m,單位長度為1m,現(xiàn)要將這些臺(tái)階鋪上地毯,需要多少平方米?

【答案】(1)建立平面直角坐標(biāo)系見解析,C(2,2),D(3,3),E(4,4),F(xiàn)(5,5);(2)11;10;(3)需要42平方米.

【解析】

(1)以點(diǎn)A為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,然后寫出各點(diǎn)的坐標(biāo)即可;

(2)根據(jù)平移的性質(zhì)求橫向與縱向的長度,即為臺(tái)階的長度和高度;

(3)根據(jù)(2)求出地毯的長度,然后乘以臺(tái)階的寬度計(jì)算即可得解.

(1)建立平面直角坐標(biāo)系如圖所示,

C(2,2),D(3,3),E(4,4),F(xiàn)(5,5);

(2)臺(tái)階的長度:1×(10+1)=11,

高度:1×10=10;

(3)∵單位長度為1m,

∴地毯的長度為:(11+10)×1=21m,

∵臺(tái)階的寬度都是2m,

∴地毯的面積為21×2=42m2,

答:將這些臺(tái)階鋪上地毯,需要42平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB的解析式為y=x+4,與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn),作PEy軸于點(diǎn)E,PFx軸于點(diǎn)F,連接EF,則線段EF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用兩種正多邊形鋪滿地面,其中一種是正八邊形,則另一種正多邊形是( )。

A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場(chǎng)去年計(jì)劃生產(chǎn)玉米和小麥共200噸.采用新技術(shù)后,實(shí)際產(chǎn)量為225噸,其中玉米超產(chǎn)5%,小麥超產(chǎn)15%.該農(nóng)場(chǎng)去年實(shí)際生產(chǎn)玉米、小麥各多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)圖中給出的信息,解答下列問題:

1)放入一個(gè)小球水面升高 ,,放入一個(gè)大球水面升高 ;

2)如果要使水面上升到50,應(yīng)放入大球、小球各多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是⊙O直徑,OD⊥弦BC于點(diǎn)F,且交⊙O于點(diǎn)E,若∠AEC=∠ODB.
(1)判斷直線BD和⊙O的位置關(guān)系,并給出證明;
(2)當(dāng)AB=10,BC=8時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交于BE的延長線于點(diǎn)F,且AF=DC,連接CF.
(1)求證:D是BC的中點(diǎn);
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰△ABC中,AD垂直于直線BC,垂足為點(diǎn)D,且AD=BC,則△ABC底角的度數(shù)為(  )

A. 45° B. 75° C. 45°或75°或15° D. 60°

查看答案和解析>>

同步練習(xí)冊(cè)答案