【題目】為了鼓勵市民節(jié)約用水,某市居民生活用水按階梯式水價計費.下表是該市民居民一戶一表生活用水階梯式計費價格表的部分信息:

(說明:每戶產生的污水量等于該戶自來水用水量;水費=自來水費用+污水處理費)

已知小王家20124月用水20噸,交水費66元,5月份用水25噸,交水費91元.

1)求ab的值;

2)隨著夏天的到來,用水量將增加.為了節(jié)省開支.小王計劃把6月份的水費控制在不超過家庭月收入的2%,若小王家的月收入為9200元,則小王家6月份最多能用水多少噸?

【答案】1,240

【解析】

解:(1)由題意,得

②-①,得

代入,得

解得

2)當用水量為30噸時,水費為:17×3+13×5=116

9200×2%=184

∵116184,

小王家六月份的用水量超過30

設小王家六月份用水量為噸,

由題意,得

,解得

小王家里六月份最多能用水40

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖:某校一塊長為2a米的正方形空地是七年級四個班的清潔區(qū),其中分給七年級(1)班的清潔區(qū)是一塊邊長為(a-2b)米的正方形,(0<b<).

1)分別求出七(2)、七(3)班的清潔區(qū)的面積;

2)七(4)班的清潔區(qū)的面積比七(1)班的清潔區(qū)的面積多多少平方米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DE是中位線,若四邊形EDCB的面積是30cm2 , 則△AED的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校九年級學生的身高情況,隨機抽取部分學生的身高進行調查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計圖表:

頻數(shù)分布表

身高分組

頻數(shù)

百分比

x155

5

10%

155≤x160

a

20%

160≤x165

15

30%

165≤x170

14

b

x≥170

6

12%

總計

100%

(1)填空:a=____,b=____

(2)補全頻數(shù)分布直方圖;

(3)該校九年級共有600名學生,估計身高不低于165cm的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,厘米,厘米,點DAB的中點如果點P在線段BC上以v厘米秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動若點Q的運動速度為3厘米秒,則當全等時,v的值為  

A. B. 3 C. 3 D. 15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題

(1)操作發(fā)現(xiàn):
如圖①,在正方形ABCD中,過A點有直線AP,點B關于AP的對稱點為E,連接DE交AP于點F,當∠BAP=20°時,則∠AFD=°;當∠BAP=α°(0<α<45°)時,則∠AFD=;猜想線段DF,EF,AF之間的數(shù)量關系:DF﹣EF=AF(填系數(shù));
(2)數(shù)學思考:
如圖②,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=120°”,其他條件不變,則∠AFD=;線段DF,EF,AF之間的數(shù)量關系是否發(fā)生改變,若發(fā)生改變,請寫出數(shù)量關系并說明理由;
(3)類比探究:
如圖③,若將“正方形ABCD中”改成“菱形ABCD中,∠BAD=α°”,其他條件不變,則∠AFD=°;請直接寫出線段DF,EF,AF之間的數(shù)量關系:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為發(fā)展電信事業(yè),方便用戶,電信公司對移動電話采取不同的收費方式,其中,所使用的“便民卡”與“如意卡”在某市范圍內每月(30天)的通話時間x(min)與通話費y(元)的關系如圖所示:

(1)分別求出通話費y1 , y2與通話時間x之間的函數(shù)關系式;
(2)請幫用戶計算,在一個月內使用哪一種卡便宜.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有六張完全相同的卡片,分A,B兩組,每組三張,在A組的卡片上分別畫上“√、×、√”,B組的卡片上分別畫上“√、×、×”,如圖1所示.

(1)若將卡片無標記的一面朝上擺在桌上,再發(fā)布從兩組卡片中隨機各抽取一張,求兩張卡片上標記都是√的概率(請用樹形圖法或列表法求解)
(2)若把A、B兩組卡片無標記的一面對應粘貼在一起得到3張卡片,其正反面標記如圖2所示,將卡片正面朝上擺放在桌上,并用瓶蓋蓋住標記.
①若隨機揭開其中一個蓋子,看到的標記是√的概率是多少?
②若揭開蓋子,看到的卡片正面標記是√后,猜想它的反面也是√,求猜對的概率.

查看答案和解析>>

同步練習冊答案