已知△ABC,分別以AB、BC、CA為邊向形外作等邊三角形ABD、等邊三角形BCE、等邊三角形ACF.

(1)如圖,當(dāng)△ABC是等邊三角形時(shí),請(qǐng)你寫(xiě)出滿(mǎn)足圖中條件,四個(gè)成立的結(jié)論;

(2)如圖,當(dāng)△ABC中只有∠ACB=60°時(shí),請(qǐng)你證明S△ABC與S△ABD的和等于S△BCE與S△ACE的和.

答案:
解析:

  解:(1)略.每正確地寫(xiě)出一個(gè)結(jié)論得1分,共4分.

  (2)

  解:過(guò)A作AM∥FC交BC于M,連結(jié)DM、EM.

  因?yàn)椤螦CB=60°,∠CAF=60°,

  所以∠ACB=∠CAF.

  所以AF∥MC.

  所以四邊形AMCF為平行四邊形.

  又因?yàn)镕A=FC,所以AMCF為菱形.

  所以AC=CM=AM,且∠MAC=60°.

  在△BAC與△EMC中,CA=CM,∠ACB=∠MCE,CB=CE,

  所以△BAC≌△EMC.

  所以BA=EM.

  在△ADM與△ABC中,AM=AC,∠DAM=∠BAC,DA=BA,

  所以△ADM≌△ABC.

  所以DM=BC.

  則DM=EB,DB=EM.

  所以四邊形DBEM為平行四邊形.

  所以S△BDM+S△DAM+S△MAC=S△BEM+S△EMC+S△ACF

  即S△ABC+S△ABD=S△BCE+S△ACF


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知△ABC,分別以AB,AC為邊,向形外作等邊三角形ABD和ACE,連接BE,DC,其中,則△ADC≌△ABE的根據(jù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知△ABC,分別以BC、AC為邊向形外作正方形BDEC,正方形ACFG,過(guò)C點(diǎn)的直線(xiàn)MN垂直于AB于N,交EF于M,
(1)當(dāng)∠ACB=90°時(shí),試證明:①EF=AB;②M為EF的中點(diǎn);

(2)當(dāng)∠ACB為銳角或鈍角時(shí),①EF與AB的數(shù)量關(guān)系為
當(dāng)∠ACB為銳角時(shí),EF>AB,當(dāng)∠ACB為鈍角時(shí),EF<AB
(分情況說(shuō)明);
②M還是EF的中點(diǎn)嗎?請(qǐng)說(shuō)明理由.(選擇當(dāng)∠ACB為銳角或鈍角時(shí)的一種情況來(lái)說(shuō)明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、已知△ABC,分別以AB、BC、CA為邊向形外作等邊三角形ABD、等邊三角形BCE、等邊三角形ACF.
(1)如圖,當(dāng)△ABC是等邊三角形時(shí),請(qǐng)你寫(xiě)出滿(mǎn)足圖中條件,四個(gè)成立的結(jié)論;
(2)如圖,當(dāng)△ABC中只有∠ACB=60°時(shí),請(qǐng)你證明S△ABC與S△ABD的和等于S△BCE與S△ACF的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•博野縣模擬)閱讀下面材料:
小明遇到這樣一個(gè)問(wèn)題:如圖1,△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面積為1,試求以AD、BC、OC+OD的長(zhǎng)度為三邊長(zhǎng)的三角形的面積.

小明是這樣思考的:要解決這個(gè)問(wèn)題,首先應(yīng)想辦法移動(dòng)這些分散的線(xiàn)段,構(gòu)造一個(gè)三角形,再計(jì)算其面積即可.他利用圖形變換解決了這個(gè)問(wèn)題,其解題思路是延長(zhǎng)CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而得到的△BCE即是以AD、BC、OC+OD的長(zhǎng)度為三邊長(zhǎng)的三角形(如圖2).
請(qǐng)你回答:圖2中△BCE的面積等于
2
2

請(qǐng)你嘗試用平移、旋轉(zhuǎn)、翻折的方法,解決下列問(wèn)題:
如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
(1)在圖3中利用圖形變換畫(huà)出并指明以EG、FH、ID的長(zhǎng)度為三邊長(zhǎng)的一個(gè)三角形(保留畫(huà)圖痕跡);
(2)若△ABC的面積為1,則以EG、FH、ID的長(zhǎng)度為三邊長(zhǎng)的三角形的面積等于
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•南開(kāi)區(qū)一模)閱讀下面材料:小明遇到這樣一個(gè)問(wèn)題:如圖1,△ABO和△CBO均為等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面積為1,試求以AD、BC、OC+OD的長(zhǎng)度為三邊長(zhǎng)的三角形的面積.小明是這樣思考的:要解決這個(gè)問(wèn)題,首先應(yīng)想辦法移動(dòng)這些分散的線(xiàn)段,構(gòu)成一個(gè)三角形,在計(jì)算其面積即可.他利用圖形變換解決了這個(gè)問(wèn)題,其解題思路是延長(zhǎng)CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而等到的△BCE即時(shí)以AD、BC、OC+OD的長(zhǎng)度為三邊長(zhǎng)的三角形(如圖2).
(I)請(qǐng)你回答:圖2中△BCE的面積等于
2
2

(II)請(qǐng)你嘗試用平移、旋轉(zhuǎn)、翻折的方法,解決下列問(wèn)題:如圖3,已知ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.若△ABC的面積為1,則以EG、FH、ID的長(zhǎng)度為三邊長(zhǎng)的三角形的面積等于
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案