【題目】某學校體育場看臺的側(cè)面如圖陰影部分所示,看臺有四級高度相等的小臺階.已知看臺高為1.6米,現(xiàn)要做一個不銹鋼的扶手AB及兩根與FG垂直且長為l米的不銹鋼架桿AD和BC(桿子的底端分別為D,C),且∠DAB=66.5°.
(1)求點D與點C的高度差DH;
(2)求所用不銹鋼材料的總長度l.(即AD+AB+BC,結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)
【答案】(1)DH=1.2米;(2)點D與點C的高度差DH為1.2米;所用不銹鋼材料的總長度約為5.0米.
【解析】
(1)通過圖觀察可知DH高度包含3層臺階,因而DH=每級小臺階高度×小臺階層數(shù).
(2)首先過點B作BM⊥AH,垂足為M.求得AM的長,在Rt△AMB中,根據(jù)余弦函數(shù)即可求得AB的長,那么根據(jù)不銹鋼材料的總長度l=AD+AB+BC,求得所用不銹鋼材料的長.
(1)DH=1.6×=1.2(米);
(2)過B作BM⊥AH于M,則四邊形BCHM是矩形.
∴MH=BC=1
∴AM=AH﹣MH=1+1.2﹣1=1.2.
在Rt△AMB中,∠A=66.5°.
∴AB=(米).
∴l=AD+AB+BC≈1+3.0+1=5.0(米).
答:點D與點C的高度差DH為1.2米;所用不銹鋼材料的總長度約為5.0米.
科目:初中數(shù)學 來源: 題型:
【題目】已知:在Rt△ABC中,AB=BC;在Rt△ADE中,AD=DE;連結(jié)EC,取EC的中點M,連結(jié)DM和BM.
(1)若點D在邊AC上,點E在邊AB上且與點B不重合,如圖①,
求證:BM=DM且BM⊥DM;
(2)如果將圖①中的△ADE繞點A逆時針旋轉(zhuǎn)小于45°的角,如圖②,那么(1)中的結(jié)論是否仍成立?如果不成立,請舉出反例;如果成立,請給予證明.
圖① 圖②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果商販用600元購進了一批水果,上市后銷售非常好,商販又用1400元購進第二批這種水果,所購水果數(shù)量是第一批購進數(shù)量的2倍,但每箱進價多了5元.
(1)求該商販第一批購進水果每箱多少元;
(2)由于儲存不當,第二批購進的水果中有10%腐壞,不能售賣,該商販將兩批水果按同一價格全部銷售完畢后獲利不低于800元,求每箱水果的售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,函數(shù)的圖象記為,函數(shù)的圖象記為,其中為常數(shù).圖象,合起來得到的圖象記為.
(1)當時,
①點在圖象上,求的值;
②求圖象與軸的交點坐標;
(2)當圖象的最低點到軸距離為時,求的值;
(3)已知線段的兩個端點坐標分別為,,當圖象與線段有兩個交點時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為原點,點A(0,10),點B(m,0),且m>0,把△AOB繞點A逆時針旋轉(zhuǎn)90°,得到△ACD,點O,B旋轉(zhuǎn)后的對應點分別為點C,D.
(1)點C的坐標為 ;
(2)①設(shè)△BCD的面積為S,用含m的代數(shù)式表示S,并直接寫出m的取值范圍;
②當S=12時,請直接寫出點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,點P是BC邊上一點,連接AP,點E,F是AP上的兩點,連接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.
求證:(1)△ABF≌△DAE;
(2)DE=BF+EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在反比例函數(shù)y=(x>0)的圖象上,點B在反比例函數(shù)y=(x>0)的圖象上,AB∥x軸,BC⊥x軸,垂足為C,連接AC,若△ABC的面積為2,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A1B1C1,使△A1B1C1與△ABC位似,且位似比為2:1,點C1的坐標是_______;
(2)△A1B1C1的面積是_______平方單位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是的直徑,點P在BA的延長線上,PD切于點D,過點B作,交PD的延長線于點C,連接AD并延長,交BE于點E.
(Ⅰ)求證:AB=BE;
(Ⅱ)連結(jié)OC,如果PD=2,∠ABC=60°,求OC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com