【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點(diǎn)D在拋物線上,DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0t4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).

【答案】(1)拋物線的解析式為y=x2x﹣1;(2)p=﹣(t﹣2)2+當(dāng)t=2時(shí),p有最大值(3)“落點(diǎn)”的個(gè)數(shù)有4個(gè),點(diǎn)A1坐標(biāo)為(,0)或().

【解析】

試題分析:(1)把點(diǎn)B的坐標(biāo)代入直線解析式求出m的值,再把點(diǎn)C的坐標(biāo)代入直線求解即可得到n的值,然后利用待定系數(shù)法求二次函數(shù)解析式解答;(2)令y=0求出點(diǎn)A的坐標(biāo),從而得到OA、OB的長(zhǎng)度,利用勾股定理列式求出AB的長(zhǎng),然后根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得ABO=DEF,再解直角三角形用DE表示出EF、DF,根據(jù)矩形的周長(zhǎng)公式表示出p,利用直線和拋物線的解析式表示DE的長(zhǎng),整理即可得到P與t的關(guān)系式,再利用二次函數(shù)的最值問題解答;(3)根據(jù)逆時(shí)針旋轉(zhuǎn)角為90°可得A1O1y軸時(shí),B1O1x軸,旋轉(zhuǎn)角是180°判斷出A1O1在x軸上,B1O1y軸,根據(jù)B1縱坐標(biāo)為1,求出B1橫坐標(biāo)即可解決問題.

試題解析:(1)直線l:y=x+m經(jīng)過點(diǎn)B(0,﹣1),

m=﹣1,

直線l的解析式為y=x﹣1,

直線l:y=x﹣1經(jīng)過點(diǎn)C(4,n),

n=×4﹣1=2,

拋物線y=x2+bx+c經(jīng)過點(diǎn)C(4,2)和點(diǎn)B(0,﹣1),

,

解得,

拋物線的解析式為y=x2x﹣1;

(2)令y=0,則x﹣1=0,

解得x=,

點(diǎn)A的坐標(biāo)為(,0),

OA=,

在RtOAB中,OB=1,

AB==,

DEy軸,

∴∠ABO=DEF,

在矩形DFEG,EF=DEcosDEF=DE=DE,

DF=DEsinDEF=DE=DE,

p=2(DF+EF)=2(+)DE=DE,

點(diǎn)D的橫坐標(biāo)為t(0t4),

D(t, t2t﹣1),E(t, t﹣1),

DE=(t﹣1)﹣(t2t﹣1)=﹣t2+2t,

p=×(﹣t2+2t)=﹣t2+t,

p=﹣(t﹣2)2+,且﹣0,

當(dāng)t=2時(shí),p有最大值

(3)“落點(diǎn)”的個(gè)數(shù)有4個(gè),如圖1,圖2,圖3,圖4所示.

如圖3,圖4中,B1O1=BO=1,則x2x﹣1=1,解得x=

A1O1=,

圖3中,OA1=OO1+A1O1,圖4中OA1OO1+O1A1=

點(diǎn)A1坐標(biāo)為(,0)或().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD=AC,BE=BC.

(1)若∠ACB=96°求∠DCE的度數(shù).

(2)問:∠DCE與∠A,∠B之間存在怎樣的數(shù)量關(guān)系(直接寫出答案)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)以a,b為直角邊,c為斜邊作兩個(gè)全等的Rt△ABERt△FCD拼成如圖1所示的圖形,使B,E,F,C四點(diǎn)在一條直線上(此時(shí)E,F重合),可知△ABE △FCD,AEDF,請(qǐng)你證明:;

(2)在(1)中,固定△FCD,再將△ABE沿著BC平移到如圖2的位置(此時(shí)B,F重合),請(qǐng)你重新證明:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五位學(xué)生的一分鐘跳繩成績(jī)分布為(單位:個(gè)):126,134,134,135,160,在統(tǒng)計(jì)數(shù)據(jù)時(shí),把其中一個(gè)134寫出了124,則計(jì)算結(jié)果不受影響的是( )

A.中位數(shù)B.眾數(shù)C.方差D.平均數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推廣陽(yáng)光體育大課間活動(dòng),我市某中學(xué)決定在學(xué)生中開設(shè)A:實(shí)心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問題:

1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?

2)請(qǐng)計(jì)算本項(xiàng)調(diào)查中喜歡立定跳遠(yuǎn)的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

3)若調(diào)查到喜歡跳繩5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)科學(xué)家估計(jì),地球的年齡大約是4 550 000 000年,將4 550 000 000用科學(xué)記數(shù)法表示為(

A.455×107B.0.455×1010C.45.5×108D.4.55×109

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鄭州市霧霾天氣趨于嚴(yán)重,丹尼斯商場(chǎng)根據(jù)民眾健康需要,代理銷售每臺(tái) 進(jìn)價(jià)分別為600元、560元的A、B兩種型號(hào)的空氣凈化器,如表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

4臺(tái)

5臺(tái)

7100元

第二周

6臺(tái)

10臺(tái)

12600元

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)

(1)求A,B兩種型號(hào)的空氣凈化器的銷售單價(jià);

(2)若商場(chǎng)準(zhǔn)備用不多于17200元的金額再采購(gòu)這兩種型號(hào)的空氣凈化器共30臺(tái),超市銷售完這30臺(tái)空氣凈化器能否實(shí)現(xiàn)利潤(rùn)為6200元的目標(biāo),若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是等邊三角形,延長(zhǎng)BC至D,連接AD,在AD上取一點(diǎn)E,連接BE交AC于F,若AF+CD=AD,DE=2,AF=4,則AD長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《濟(jì)南市人口發(fā)展十三五規(guī)劃》近日出爐,根據(jù)規(guī)劃,到2020年全市常住人口將達(dá)到70萬(wàn)人,城區(qū)常住人口規(guī)模達(dá)500萬(wàn)人以上,邁入特大城市行列,770萬(wàn)這個(gè)數(shù)用科學(xué)記數(shù)法表示為( 。

A. 77×105 B. 7.7×105 C. 7.7×106 D. 0.77×107

查看答案和解析>>

同步練習(xí)冊(cè)答案