【題目】如圖,在中,

(1)先作的平分線交邊于點(diǎn),再以點(diǎn)為圓心,長為半徑作

(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)請你判斷(1)中的位置關(guān)系,并證明你的結(jié)論.

(3)若,,求出(1)中的半徑.

【答案】(1)答案見解析;(2)BC與⊙P相切;(3)

【解析】試題分析:(1)根據(jù)題意畫出圖形即可;(2)與⊙相切,作,根據(jù)角平分線的性質(zhì)定理可得,即可得是⊙的半徑,所以與⊙相切;(3)中,根據(jù)勾股定理求得BC的長,

設(shè),由可得,即可求得x的值,即可得⊙的半徑.

試題解析:

)如圖所示.

與⊙相切.

證明:作,

的角平分線上,

,

,

是⊙的半徑,

與⊙相切.

)在中,由勾股定理可得:,

可得

設(shè),

則有,

解得:

即⊙的半徑為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△DEF中,滿足AB=DE,∠B=∠E,如果要判定這兩個(gè)三角形全等,那么添加的條件不正確的是( )

A. ∠A=∠D B. ∠C=∠F C. BC=EF D. AC=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形的對角線交于點(diǎn),把邊分別繞點(diǎn)、同時(shí)逆時(shí)針旋轉(zhuǎn)得四邊形,其對角線交點(diǎn)為,連接.下列結(jié)論:

四邊形為菱形;

線段的長為;

點(diǎn)運(yùn)動(dòng)到點(diǎn)的路徑是線段.其中正確的結(jié)論共有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知ABC中, BAC=90°, AB=AC, AE是過A的一條直線, 且B、C在AE的異側(cè), BDAE于D, CEAE于E.

(1)求證: BD=DE+CE.

(2)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖位置時(shí)(BD<CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請給予證明;

(3)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖位置時(shí)(BD>CE), 其余條件不變, 問BD與DE、CE的數(shù)量關(guān)系如何? 請直接寫出結(jié)果, 不需證明.

(4)根據(jù)以上的討論,請用簡潔的語言表達(dá)BD與DE,CE的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李大媽加盟了紅紅全國燒烤連鎖店,該公司的宗旨是薄利多銷,經(jīng)市場調(diào)查發(fā)現(xiàn),當(dāng)羊肉串的單價(jià)定為元時(shí),每天能賣出串,在此基礎(chǔ)上,每加價(jià)元李大媽每天就會(huì)少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價(jià)為元,若李大媽每天銷售這種羊肉串想獲得利潤是元,那么請問這種羊肉串應(yīng)怎樣定價(jià)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,⊙OABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D的切線分別交AB,AC的延長線于點(diǎn)E,F(xiàn).

(1)求證:AFEF.

(2)探究線段AF、CF、AB之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC為等邊三角形,DAC的中點(diǎn),∠EDF120°,DE交線段ABE,DF交直線BCF

1)如圖(1),求證:DEDF;

2)如圖(2),若BE3AE,求證:CFBC

3)如圖(3),若BEAE,則CF   BC;在圖(1)中,若BE4AE,則CF   BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次出數(shù)的圖象與軸交于點(diǎn)、,與軸的正半軸的交點(diǎn)在的下方,則,②,③,④,其中正確的個(gè)數(shù)為(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長.

查看答案和解析>>

同步練習(xí)冊答案